Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292596087> ?p ?o ?g. }
- W4292596087 endingPage "6663" @default.
- W4292596087 startingPage "6643" @default.
- W4292596087 abstract "The COVID-19 pandemic has resulted in millions of deaths around the world. Multiple vaccines are in use, but there are many underserved locations that do not have adequate access to them. Variants may emerge that are highly resistant to existing vaccines, and therefore cheap and readily obtainable therapeutics are needed. Phytochemicals, or plant chemicals, can possibly be such therapeutics. Phytochemicals can be used in a polypharmacological approach, where multiple viral proteins are inhibited and escape mutations are made less likely. Finding the right phytochemicals for viral protein inhibition is challenging, but in-silico screening methods can make this a more tractable problem. In this study, we screen a wide range of natural drug products against a comprehensive set of SARS-CoV-2 proteins using a high-resolution computational workflow. This workflow consists of a structure-based virtual screening (SBVS), where an initial phytochemical library was docked against all selected protein structures. Subsequently, ligand-based virtual screening (LBVS) was employed, where chemical features of 34 lead compounds obtained from the SBVS were used to predict 53 lead compounds from a larger phytochemical library via supervised learning. A computational docking validation of the 53 predicted leads obtained from LBVS revealed that 28 of them elicit strong binding interactions with SARS-CoV-2 proteins. Thus, the inclusion of LBVS resulted in a 4-fold increase in the lead discovery rate. Of the total 62 leads, 18 showed promising pharmacokinetic properties in a computational ADME screening. Collectively, this study demonstrates the advantage of incorporating machine learning elements into a virtual screening workflow.Communicated by Ramaswamy H. Sarma." @default.
- W4292596087 created "2022-08-22" @default.
- W4292596087 creator A5002886648 @default.
- W4292596087 creator A5040000740 @default.
- W4292596087 creator A5042981412 @default.
- W4292596087 creator A5045731858 @default.
- W4292596087 creator A5050700926 @default.
- W4292596087 creator A5062387652 @default.
- W4292596087 date "2022-08-22" @default.
- W4292596087 modified "2023-10-16" @default.
- W4292596087 title "Phytochemical drug discovery for COVID-19 using high-resolution computational docking and machine learning assisted binder prediction" @default.
- W4292596087 cites W1507887256 @default.
- W4292596087 cites W1535602073 @default.
- W4292596087 cites W1605786919 @default.
- W4292596087 cites W1964940342 @default.
- W4292596087 cites W1979600197 @default.
- W4292596087 cites W1984682563 @default.
- W4292596087 cites W1988037271 @default.
- W4292596087 cites W1988195734 @default.
- W4292596087 cites W2002838513 @default.
- W4292596087 cites W2010903641 @default.
- W4292596087 cites W2032842297 @default.
- W4292596087 cites W2033591223 @default.
- W4292596087 cites W2054745605 @default.
- W4292596087 cites W2079744699 @default.
- W4292596087 cites W2082669279 @default.
- W4292596087 cites W2084146166 @default.
- W4292596087 cites W2088252378 @default.
- W4292596087 cites W2130479394 @default.
- W4292596087 cites W2132629607 @default.
- W4292596087 cites W2132914434 @default.
- W4292596087 cites W2133506114 @default.
- W4292596087 cites W2151697120 @default.
- W4292596087 cites W2152903006 @default.
- W4292596087 cites W2165232124 @default.
- W4292596087 cites W2169678694 @default.
- W4292596087 cites W2329603651 @default.
- W4292596087 cites W2568617656 @default.
- W4292596087 cites W2593436234 @default.
- W4292596087 cites W2767106145 @default.
- W4292596087 cites W2795104011 @default.
- W4292596087 cites W2795275487 @default.
- W4292596087 cites W2803843415 @default.
- W4292596087 cites W2897671112 @default.
- W4292596087 cites W2902812092 @default.
- W4292596087 cites W2907263004 @default.
- W4292596087 cites W2910437673 @default.
- W4292596087 cites W2913635479 @default.
- W4292596087 cites W2914796231 @default.
- W4292596087 cites W2937307539 @default.
- W4292596087 cites W3009335299 @default.
- W4292596087 cites W3011701533 @default.
- W4292596087 cites W3017291089 @default.
- W4292596087 cites W3034131048 @default.
- W4292596087 cites W3034907915 @default.
- W4292596087 cites W3035235542 @default.
- W4292596087 cites W3036669765 @default.
- W4292596087 cites W3036688391 @default.
- W4292596087 cites W3036699232 @default.
- W4292596087 cites W3040116040 @default.
- W4292596087 cites W3043662389 @default.
- W4292596087 cites W3045327938 @default.
- W4292596087 cites W3047641059 @default.
- W4292596087 cites W3081250137 @default.
- W4292596087 cites W3081328761 @default.
- W4292596087 cites W3083406432 @default.
- W4292596087 cites W3083872269 @default.
- W4292596087 cites W3089819726 @default.
- W4292596087 cites W3091637359 @default.
- W4292596087 cites W3092070807 @default.
- W4292596087 cites W3092948466 @default.
- W4292596087 cites W3092990052 @default.
- W4292596087 cites W3093345512 @default.
- W4292596087 cites W3093578841 @default.
- W4292596087 cites W3093740861 @default.
- W4292596087 cites W3094526409 @default.
- W4292596087 cites W3094951777 @default.
- W4292596087 cites W3095138804 @default.
- W4292596087 cites W3095507416 @default.
- W4292596087 cites W3097787248 @default.
- W4292596087 cites W3104727101 @default.
- W4292596087 cites W3106598144 @default.
- W4292596087 cites W3111460775 @default.
- W4292596087 cites W3111512297 @default.
- W4292596087 cites W3112387761 @default.
- W4292596087 cites W3115664260 @default.
- W4292596087 cites W3122798714 @default.
- W4292596087 cites W3127273912 @default.
- W4292596087 cites W3133558598 @default.
- W4292596087 cites W3133898778 @default.
- W4292596087 cites W3134284376 @default.
- W4292596087 cites W3152451364 @default.
- W4292596087 cites W3159182925 @default.
- W4292596087 cites W3164542130 @default.
- W4292596087 cites W3164716914 @default.
- W4292596087 cites W3165872417 @default.
- W4292596087 cites W3173538883 @default.
- W4292596087 cites W3188488999 @default.