Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292598983> ?p ?o ?g. }
- W4292598983 endingPage "125105" @default.
- W4292598983 startingPage "125105" @default.
- W4292598983 abstract "Abstract Despite the great achievements of deep learning methods based on a single sensor in fault diagnosis, learning useful information from multi-sensor data is still a challenge. In order to make full use of multi-sensor information and improve the performance of rolling bearing fault diagnosis, a novel multi-sensor information fusion framework is proposed in this paper. First, a multi-sensor-based multi-frequency information fusion method is proposed. The multi-frequency information of each sensor is segmented first to enhance the datasets, and then a weighted fusion rule based on fuzzy entropy is constructed to fuse the information of different frequency components for multi-sensors. Second, a multi-kernel attention convolutional neural network is designed to realize multi-frequency feature capture, fusion, and fault classification of multi-sensors. Finally, two different rolling bearing datasets are used to implement fault diagnosis experiments. Experimental results show that the proposed method outperforms the comparative methods in terms of diagnostic performance and robustness." @default.
- W4292598983 created "2022-08-22" @default.
- W4292598983 creator A5016701351 @default.
- W4292598983 creator A5040462812 @default.
- W4292598983 creator A5065674932 @default.
- W4292598983 creator A5079131792 @default.
- W4292598983 creator A5088350919 @default.
- W4292598983 date "2022-09-12" @default.
- W4292598983 modified "2023-09-30" @default.
- W4292598983 title "Rolling bearing fault diagnosis method based on multi-sensor two-stage fusion" @default.
- W4292598983 cites W1988220963 @default.
- W4292598983 cites W2038190934 @default.
- W4292598983 cites W2461729787 @default.
- W4292598983 cites W2744790985 @default.
- W4292598983 cites W2799501716 @default.
- W4292598983 cites W2945027395 @default.
- W4292598983 cites W2955202322 @default.
- W4292598983 cites W2977117446 @default.
- W4292598983 cites W2988299412 @default.
- W4292598983 cites W2991597181 @default.
- W4292598983 cites W2994323562 @default.
- W4292598983 cites W2999516673 @default.
- W4292598983 cites W3006560346 @default.
- W4292598983 cites W3007313142 @default.
- W4292598983 cites W3009370740 @default.
- W4292598983 cites W3010850496 @default.
- W4292598983 cites W3043574526 @default.
- W4292598983 cites W3048796145 @default.
- W4292598983 cites W3099132019 @default.
- W4292598983 cites W3106650808 @default.
- W4292598983 cites W3115710758 @default.
- W4292598983 cites W3119634645 @default.
- W4292598983 cites W3134162419 @default.
- W4292598983 cites W3138869797 @default.
- W4292598983 cites W3157225028 @default.
- W4292598983 cites W3165802365 @default.
- W4292598983 cites W3167081425 @default.
- W4292598983 cites W3169347762 @default.
- W4292598983 cites W3186163945 @default.
- W4292598983 cites W3193041188 @default.
- W4292598983 cites W4200138284 @default.
- W4292598983 doi "https://doi.org/10.1088/1361-6501/ac8894" @default.
- W4292598983 hasPublicationYear "2022" @default.
- W4292598983 type Work @default.
- W4292598983 citedByCount "8" @default.
- W4292598983 countsByYear W42925989832022 @default.
- W4292598983 countsByYear W42925989832023 @default.
- W4292598983 crossrefType "journal-article" @default.
- W4292598983 hasAuthorship W4292598983A5016701351 @default.
- W4292598983 hasAuthorship W4292598983A5040462812 @default.
- W4292598983 hasAuthorship W4292598983A5065674932 @default.
- W4292598983 hasAuthorship W4292598983A5079131792 @default.
- W4292598983 hasAuthorship W4292598983A5088350919 @default.
- W4292598983 hasConcept C104317684 @default.
- W4292598983 hasConcept C119599485 @default.
- W4292598983 hasConcept C124101348 @default.
- W4292598983 hasConcept C127313418 @default.
- W4292598983 hasConcept C127413603 @default.
- W4292598983 hasConcept C138885662 @default.
- W4292598983 hasConcept C141353440 @default.
- W4292598983 hasConcept C153180895 @default.
- W4292598983 hasConcept C154945302 @default.
- W4292598983 hasConcept C158525013 @default.
- W4292598983 hasConcept C165205528 @default.
- W4292598983 hasConcept C175551986 @default.
- W4292598983 hasConcept C185592680 @default.
- W4292598983 hasConcept C199978012 @default.
- W4292598983 hasConcept C2982962833 @default.
- W4292598983 hasConcept C33954974 @default.
- W4292598983 hasConcept C41008148 @default.
- W4292598983 hasConcept C41895202 @default.
- W4292598983 hasConcept C55493867 @default.
- W4292598983 hasConcept C63479239 @default.
- W4292598983 hasConcept C81363708 @default.
- W4292598983 hasConceptScore W4292598983C104317684 @default.
- W4292598983 hasConceptScore W4292598983C119599485 @default.
- W4292598983 hasConceptScore W4292598983C124101348 @default.
- W4292598983 hasConceptScore W4292598983C127313418 @default.
- W4292598983 hasConceptScore W4292598983C127413603 @default.
- W4292598983 hasConceptScore W4292598983C138885662 @default.
- W4292598983 hasConceptScore W4292598983C141353440 @default.
- W4292598983 hasConceptScore W4292598983C153180895 @default.
- W4292598983 hasConceptScore W4292598983C154945302 @default.
- W4292598983 hasConceptScore W4292598983C158525013 @default.
- W4292598983 hasConceptScore W4292598983C165205528 @default.
- W4292598983 hasConceptScore W4292598983C175551986 @default.
- W4292598983 hasConceptScore W4292598983C185592680 @default.
- W4292598983 hasConceptScore W4292598983C199978012 @default.
- W4292598983 hasConceptScore W4292598983C2982962833 @default.
- W4292598983 hasConceptScore W4292598983C33954974 @default.
- W4292598983 hasConceptScore W4292598983C41008148 @default.
- W4292598983 hasConceptScore W4292598983C41895202 @default.
- W4292598983 hasConceptScore W4292598983C55493867 @default.
- W4292598983 hasConceptScore W4292598983C63479239 @default.
- W4292598983 hasConceptScore W4292598983C81363708 @default.
- W4292598983 hasFunder F4320321001 @default.
- W4292598983 hasIssue "12" @default.
- W4292598983 hasLocation W42925989831 @default.