Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292615897> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4292615897 abstract "To maintain a sustainable society, environmental friendliness is necessary, an effort that all countries must take part in. The effort must be pioneered by developed nations with the resources to enact sustainable policies, reduce emissions and conserve energy, from which developing nations will follow the eroded path. Recognizing the factors that promote environmental friendliness is necessary for researchers, policymakers, and activists alike. Several past studies have examined the relationship between environmental performance and various nationwide factors such as economic strength, education, and corruption. In this paper, however, we introduce the machine learning approach Multiple-Linear Regression, allowing several variables to be used in tandem. We constructed a dataset using a variety of variables from a variety of sources, either examined in past literature or justified logically. We measured environmental friendliness through the Environmental Performance Index (EPI), and chose feature variables of Women in Parliament (%), Internet users (%), Freedom Index, Ethnic fractionalization, Technological development, Press Freedom Index, Corruption Perceptions Index, GDP per capita ($), and Education Index, and Population. We found that Multiple-Linear Regression is an effective way of measuring EPI, where several metrics indicate that EPI is almost completely determined by the feature variables. We end the study by presenting the correlations of each of the variables with EPI, and find that almost all exhibit strong linear relationships. These correlations should bring light to the characteristics of environmentally friendly countries, mainly Nordic nations." @default.
- W4292615897 created "2022-08-22" @default.
- W4292615897 creator A5072302616 @default.
- W4292615897 date "2022-08-24" @default.
- W4292615897 modified "2023-09-29" @default.
- W4292615897 title "A Machine Learning Approach to Finding Factors that Lead to Environmental Friendliness" @default.
- W4292615897 doi "https://doi.org/10.31223/x59d23" @default.
- W4292615897 hasPublicationYear "2022" @default.
- W4292615897 type Work @default.
- W4292615897 citedByCount "0" @default.
- W4292615897 crossrefType "posted-content" @default.
- W4292615897 hasAuthorship W4292615897A5072302616 @default.
- W4292615897 hasBestOaLocation W42926158971 @default.
- W4292615897 hasConcept C119857082 @default.
- W4292615897 hasConcept C124952713 @default.
- W4292615897 hasConcept C127598652 @default.
- W4292615897 hasConcept C134560507 @default.
- W4292615897 hasConcept C136197465 @default.
- W4292615897 hasConcept C136764020 @default.
- W4292615897 hasConcept C137403100 @default.
- W4292615897 hasConcept C142362112 @default.
- W4292615897 hasConcept C144024400 @default.
- W4292615897 hasConcept C149923435 @default.
- W4292615897 hasConcept C154945302 @default.
- W4292615897 hasConcept C162324750 @default.
- W4292615897 hasConcept C17744445 @default.
- W4292615897 hasConcept C199539241 @default.
- W4292615897 hasConcept C27574286 @default.
- W4292615897 hasConcept C2777382242 @default.
- W4292615897 hasConcept C2780027415 @default.
- W4292615897 hasConcept C2908647359 @default.
- W4292615897 hasConcept C41008148 @default.
- W4292615897 hasConcept C50522688 @default.
- W4292615897 hasConcept C552854447 @default.
- W4292615897 hasConcept C71735400 @default.
- W4292615897 hasConcept C83864248 @default.
- W4292615897 hasConceptScore W4292615897C119857082 @default.
- W4292615897 hasConceptScore W4292615897C124952713 @default.
- W4292615897 hasConceptScore W4292615897C127598652 @default.
- W4292615897 hasConceptScore W4292615897C134560507 @default.
- W4292615897 hasConceptScore W4292615897C136197465 @default.
- W4292615897 hasConceptScore W4292615897C136764020 @default.
- W4292615897 hasConceptScore W4292615897C137403100 @default.
- W4292615897 hasConceptScore W4292615897C142362112 @default.
- W4292615897 hasConceptScore W4292615897C144024400 @default.
- W4292615897 hasConceptScore W4292615897C149923435 @default.
- W4292615897 hasConceptScore W4292615897C154945302 @default.
- W4292615897 hasConceptScore W4292615897C162324750 @default.
- W4292615897 hasConceptScore W4292615897C17744445 @default.
- W4292615897 hasConceptScore W4292615897C199539241 @default.
- W4292615897 hasConceptScore W4292615897C27574286 @default.
- W4292615897 hasConceptScore W4292615897C2777382242 @default.
- W4292615897 hasConceptScore W4292615897C2780027415 @default.
- W4292615897 hasConceptScore W4292615897C2908647359 @default.
- W4292615897 hasConceptScore W4292615897C41008148 @default.
- W4292615897 hasConceptScore W4292615897C50522688 @default.
- W4292615897 hasConceptScore W4292615897C552854447 @default.
- W4292615897 hasConceptScore W4292615897C71735400 @default.
- W4292615897 hasConceptScore W4292615897C83864248 @default.
- W4292615897 hasLocation W42926158971 @default.
- W4292615897 hasOpenAccess W4292615897 @default.
- W4292615897 hasPrimaryLocation W42926158971 @default.
- W4292615897 hasRelatedWork W128385281 @default.
- W4292615897 hasRelatedWork W2057837152 @default.
- W4292615897 hasRelatedWork W2294356266 @default.
- W4292615897 hasRelatedWork W2348945333 @default.
- W4292615897 hasRelatedWork W2391091997 @default.
- W4292615897 hasRelatedWork W2973122856 @default.
- W4292615897 hasRelatedWork W3105922679 @default.
- W4292615897 hasRelatedWork W4292200446 @default.
- W4292615897 hasRelatedWork W2284913525 @default.
- W4292615897 hasRelatedWork W2285516574 @default.
- W4292615897 isParatext "false" @default.
- W4292615897 isRetracted "false" @default.
- W4292615897 workType "article" @default.