Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292622317> ?p ?o ?g. }
- W4292622317 endingPage "108758" @default.
- W4292622317 startingPage "108758" @default.
- W4292622317 abstract "Deep learning (DL) has been intensively exploited for remaining useful life (RUL) prediction in the recent decade. Although with high precision and flexibility, DL methods need sufficient run-to-failure data to guarantee their performance. However, run-to-failure data is fairly expensive to obtain in many industrial applications. How to economically achieve high accuracy with few run-to-failure data becomes a critical and emergent issue. In this study, a Bayesian deep-active-learning framework is proposed for RUL prediction, which goes beyond traditional passive learning and introduces a novel active learning perspective. We use Bayesian neural networks with Monte Carlo dropout inference to predict RUL with uncertainty quantification for samples without run-to-failure labels. The prediction uncertainty is further used to develop an acquisition function for actively selecting target samples to obtain their run-to-failure labels. A recursive model training and active data selection mechanism are then developed to maintain accuracy while reducing the size of the training data. Two practical examples, one from a public bearing dataset and the other from our lab testing on battery degradation, are presented to demonstrate the proposed method. Experimental results demonstrate that 20 and 40% of run-to-failure data can be saved for the bearing and the battery RUL prediction, respectively." @default.
- W4292622317 created "2022-08-22" @default.
- W4292622317 creator A5003022560 @default.
- W4292622317 creator A5042314479 @default.
- W4292622317 creator A5052134746 @default.
- W4292622317 creator A5053268509 @default.
- W4292622317 date "2022-12-01" @default.
- W4292622317 modified "2023-10-16" @default.
- W4292622317 title "Bayesian deep-learning for RUL prediction: An active learning perspective" @default.
- W4292622317 cites W2005523062 @default.
- W4292622317 cites W2060099436 @default.
- W4292622317 cites W2111051539 @default.
- W4292622317 cites W2513919993 @default.
- W4292622317 cites W2808622270 @default.
- W4292622317 cites W2810292802 @default.
- W4292622317 cites W2889809771 @default.
- W4292622317 cites W2900438754 @default.
- W4292622317 cites W2907206366 @default.
- W4292622317 cites W2908781812 @default.
- W4292622317 cites W2908875359 @default.
- W4292622317 cites W2927135077 @default.
- W4292622317 cites W2945413072 @default.
- W4292622317 cites W2949071206 @default.
- W4292622317 cites W2956342231 @default.
- W4292622317 cites W2986514296 @default.
- W4292622317 cites W2998506103 @default.
- W4292622317 cites W3007217854 @default.
- W4292622317 cites W3036910660 @default.
- W4292622317 cites W3040694753 @default.
- W4292622317 cites W3045162186 @default.
- W4292622317 cites W3086959365 @default.
- W4292622317 cites W3100445615 @default.
- W4292622317 cites W3112051552 @default.
- W4292622317 cites W3150223772 @default.
- W4292622317 cites W3155363590 @default.
- W4292622317 cites W3173071471 @default.
- W4292622317 cites W3177862163 @default.
- W4292622317 cites W3178034484 @default.
- W4292622317 cites W3201108028 @default.
- W4292622317 cites W3214086990 @default.
- W4292622317 cites W3215227219 @default.
- W4292622317 cites W4200216090 @default.
- W4292622317 cites W4200585074 @default.
- W4292622317 cites W4205237702 @default.
- W4292622317 cites W4205830141 @default.
- W4292622317 cites W4210562913 @default.
- W4292622317 cites W4210792645 @default.
- W4292622317 cites W4210940432 @default.
- W4292622317 cites W4212940123 @default.
- W4292622317 cites W4224099620 @default.
- W4292622317 cites W4226397853 @default.
- W4292622317 cites W3118703835 @default.
- W4292622317 doi "https://doi.org/10.1016/j.ress.2022.108758" @default.
- W4292622317 hasPublicationYear "2022" @default.
- W4292622317 type Work @default.
- W4292622317 citedByCount "16" @default.
- W4292622317 countsByYear W42926223172023 @default.
- W4292622317 crossrefType "journal-article" @default.
- W4292622317 hasAuthorship W4292622317A5003022560 @default.
- W4292622317 hasAuthorship W4292622317A5042314479 @default.
- W4292622317 hasAuthorship W4292622317A5052134746 @default.
- W4292622317 hasAuthorship W4292622317A5053268509 @default.
- W4292622317 hasConcept C105795698 @default.
- W4292622317 hasConcept C107673813 @default.
- W4292622317 hasConcept C108583219 @default.
- W4292622317 hasConcept C119857082 @default.
- W4292622317 hasConcept C124101348 @default.
- W4292622317 hasConcept C12713177 @default.
- W4292622317 hasConcept C154945302 @default.
- W4292622317 hasConcept C160234255 @default.
- W4292622317 hasConcept C2776145597 @default.
- W4292622317 hasConcept C2776214188 @default.
- W4292622317 hasConcept C2780598303 @default.
- W4292622317 hasConcept C33923547 @default.
- W4292622317 hasConcept C41008148 @default.
- W4292622317 hasConcept C50644808 @default.
- W4292622317 hasConcept C77967617 @default.
- W4292622317 hasConceptScore W4292622317C105795698 @default.
- W4292622317 hasConceptScore W4292622317C107673813 @default.
- W4292622317 hasConceptScore W4292622317C108583219 @default.
- W4292622317 hasConceptScore W4292622317C119857082 @default.
- W4292622317 hasConceptScore W4292622317C124101348 @default.
- W4292622317 hasConceptScore W4292622317C12713177 @default.
- W4292622317 hasConceptScore W4292622317C154945302 @default.
- W4292622317 hasConceptScore W4292622317C160234255 @default.
- W4292622317 hasConceptScore W4292622317C2776145597 @default.
- W4292622317 hasConceptScore W4292622317C2776214188 @default.
- W4292622317 hasConceptScore W4292622317C2780598303 @default.
- W4292622317 hasConceptScore W4292622317C33923547 @default.
- W4292622317 hasConceptScore W4292622317C41008148 @default.
- W4292622317 hasConceptScore W4292622317C50644808 @default.
- W4292622317 hasConceptScore W4292622317C77967617 @default.
- W4292622317 hasFunder F4320320709 @default.
- W4292622317 hasFunder F4320321160 @default.
- W4292622317 hasFunder F4320329791 @default.
- W4292622317 hasFunder F4320335787 @default.
- W4292622317 hasFunder F4320336405 @default.
- W4292622317 hasLocation W42926223171 @default.