Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292623271> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4292623271 abstract "Background and Hypothesis:Automated language analysis is becoming an increasingly popular tool in clinical research involving individuals with mental health disorders. Previous work has largely focused on using high-dimensional language features to develop diagnostic and prognostic models, but less work has been done to use linguistic output to assess downstream functional outcomes, which is critically important for clinical care. In this work, we study the relationship between automated language composites and clinical variables that characterize mental health status and functional competency using predictive modeling.Study Design:Conversational transcripts were collected from a social skills assessment of individuals with schizophrenia (n = 141), bipolar disorder (n = 140), and healthy controls (n = 22). A set of composite language features based on a theoretical framework of speech production were extracted from each transcript and predictive models were trained. The prediction targets included clinical variables for assessment of mental health status and social and functional competency. All models were validated on a held-out test sample not accessible to the model designer.Study Results:Our models predicted the neurocognitive composite with Pearson correlation PCC=0.674; PANSS-positive with PCC=0.509; PANSS-negative with PCC=0.767; social skills composite with PCC=0.785; functional competency composite with PCC=0.616. Language features related to volition, affect, semantic coherence, appropriateness of response, and lexical diversity were useful for prediction of clinical variables. Conclusions:Language samples provide useful information for the prediction of a variety of clinical variables that characterize mental health status and functional competency." @default.
- W4292623271 created "2022-08-22" @default.
- W4292623271 creator A5007991853 @default.
- W4292623271 creator A5011175040 @default.
- W4292623271 creator A5015429874 @default.
- W4292623271 creator A5021646973 @default.
- W4292623271 creator A5026098772 @default.
- W4292623271 creator A5029742430 @default.
- W4292623271 creator A5038001239 @default.
- W4292623271 creator A5056934840 @default.
- W4292623271 creator A5059281501 @default.
- W4292623271 creator A5076778508 @default.
- W4292623271 date "2022-08-22" @default.
- W4292623271 modified "2023-09-28" @default.
- W4292623271 title "Language Analytics for Assessment of Mental Health Status and Functional Competency" @default.
- W4292623271 doi "https://doi.org/10.31234/osf.io/yw7c6" @default.
- W4292623271 hasPublicationYear "2022" @default.
- W4292623271 type Work @default.
- W4292623271 citedByCount "0" @default.
- W4292623271 crossrefType "posted-content" @default.
- W4292623271 hasAuthorship W4292623271A5007991853 @default.
- W4292623271 hasAuthorship W4292623271A5011175040 @default.
- W4292623271 hasAuthorship W4292623271A5015429874 @default.
- W4292623271 hasAuthorship W4292623271A5021646973 @default.
- W4292623271 hasAuthorship W4292623271A5026098772 @default.
- W4292623271 hasAuthorship W4292623271A5029742430 @default.
- W4292623271 hasAuthorship W4292623271A5038001239 @default.
- W4292623271 hasAuthorship W4292623271A5056934840 @default.
- W4292623271 hasAuthorship W4292623271A5059281501 @default.
- W4292623271 hasAuthorship W4292623271A5076778508 @default.
- W4292623271 hasConcept C118552586 @default.
- W4292623271 hasConcept C134362201 @default.
- W4292623271 hasConcept C151730666 @default.
- W4292623271 hasConcept C15744967 @default.
- W4292623271 hasConcept C169900460 @default.
- W4292623271 hasConcept C172467417 @default.
- W4292623271 hasConcept C204321447 @default.
- W4292623271 hasConcept C2776412080 @default.
- W4292623271 hasConcept C2777267654 @default.
- W4292623271 hasConcept C41008148 @default.
- W4292623271 hasConcept C70410870 @default.
- W4292623271 hasConcept C75630572 @default.
- W4292623271 hasConcept C86803240 @default.
- W4292623271 hasConceptScore W4292623271C118552586 @default.
- W4292623271 hasConceptScore W4292623271C134362201 @default.
- W4292623271 hasConceptScore W4292623271C151730666 @default.
- W4292623271 hasConceptScore W4292623271C15744967 @default.
- W4292623271 hasConceptScore W4292623271C169900460 @default.
- W4292623271 hasConceptScore W4292623271C172467417 @default.
- W4292623271 hasConceptScore W4292623271C204321447 @default.
- W4292623271 hasConceptScore W4292623271C2776412080 @default.
- W4292623271 hasConceptScore W4292623271C2777267654 @default.
- W4292623271 hasConceptScore W4292623271C41008148 @default.
- W4292623271 hasConceptScore W4292623271C70410870 @default.
- W4292623271 hasConceptScore W4292623271C75630572 @default.
- W4292623271 hasConceptScore W4292623271C86803240 @default.
- W4292623271 hasLocation W42926232711 @default.
- W4292623271 hasOpenAccess W4292623271 @default.
- W4292623271 hasPrimaryLocation W42926232711 @default.
- W4292623271 hasRelatedWork W1649402628 @default.
- W4292623271 hasRelatedWork W2007163693 @default.
- W4292623271 hasRelatedWork W2119182614 @default.
- W4292623271 hasRelatedWork W2160730205 @default.
- W4292623271 hasRelatedWork W2338207405 @default.
- W4292623271 hasRelatedWork W2406835253 @default.
- W4292623271 hasRelatedWork W3008689247 @default.
- W4292623271 hasRelatedWork W3131037418 @default.
- W4292623271 hasRelatedWork W3199544934 @default.
- W4292623271 hasRelatedWork W567737511 @default.
- W4292623271 isParatext "false" @default.
- W4292623271 isRetracted "false" @default.
- W4292623271 workType "article" @default.