Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292634577> ?p ?o ?g. }
- W4292634577 abstract "Identifying biomarkers for predicting progression to dementia in patients with mild cognitive impairment (MCI) is crucial. To this end, the comprehensive visual rating scale (CVRS), which is based on magnetic resonance imaging (MRI), was developed for the assessment of structural changes in the brains of patients with MCI. This study aimed to investigate the use of the CVRS score for predicting dementia in patients with MCI over a 2-year follow-up period using various machine learning (ML) algorithms.We included 197 patients with MCI who were followed up more than once. The data used for this study were obtained from the Japanese-Alzheimer's Disease Neuroimaging Initiative study. We assessed all the patients using their CVRS scores, cortical thickness data, and clinical data to determine their progression to dementia during a follow-up period of over 2 years. ML algorithms, such as logistic regression, random forest (RF), XGBoost, and LightGBM, were applied to the combination of the dataset. Further, feature importance that contributed to the progression from MCI to dementia was analyzed to confirm the risk predictors among the various variables evaluated.Of the 197 patients, 108 (54.8%) showed progression from MCI to dementia. Tree-based classifiers, such as XGBoost, LightGBM, and RF, achieved relatively high performance. In addition, the prediction models showed better performance when clinical data and CVRS score (accuracy 0.701-0.711) were used than when clinical data and cortical thickness (accuracy 0.650-0.685) were used. The features related to CVRS helped predict progression to dementia using the tree-based models compared to logistic regression.Tree-based ML algorithms can predict progression from MCI to dementia using baseline CVRS scores combined with clinical data." @default.
- W4292634577 created "2022-08-22" @default.
- W4292634577 creator A5001679413 @default.
- W4292634577 creator A5003132353 @default.
- W4292634577 creator A5012106415 @default.
- W4292634577 creator A5012405165 @default.
- W4292634577 creator A5015159346 @default.
- W4292634577 creator A5016534058 @default.
- W4292634577 creator A5019303202 @default.
- W4292634577 creator A5022338359 @default.
- W4292634577 creator A5024402158 @default.
- W4292634577 creator A5028978854 @default.
- W4292634577 creator A5046271018 @default.
- W4292634577 creator A5050456628 @default.
- W4292634577 creator A5052555237 @default.
- W4292634577 creator A5058073637 @default.
- W4292634577 creator A5062441935 @default.
- W4292634577 creator A5086284878 @default.
- W4292634577 creator A5088147849 @default.
- W4292634577 date "2022-08-22" @default.
- W4292634577 modified "2023-10-14" @default.
- W4292634577 title "Predicting progression to dementia with “comprehensive visual rating scale” and machine learning algorithms" @default.
- W4292634577 cites W1600504298 @default.
- W4292634577 cites W1953027527 @default.
- W4292634577 cites W1981583093 @default.
- W4292634577 cites W2051274997 @default.
- W4292634577 cites W2056733711 @default.
- W4292634577 cites W2059467893 @default.
- W4292634577 cites W2065338300 @default.
- W4292634577 cites W2075916384 @default.
- W4292634577 cites W2105778736 @default.
- W4292634577 cites W2112132562 @default.
- W4292634577 cites W2115017507 @default.
- W4292634577 cites W2129497119 @default.
- W4292634577 cites W2133259243 @default.
- W4292634577 cites W2134836371 @default.
- W4292634577 cites W2148080316 @default.
- W4292634577 cites W2149614271 @default.
- W4292634577 cites W2154900811 @default.
- W4292634577 cites W2156220037 @default.
- W4292634577 cites W2159122349 @default.
- W4292634577 cites W2167458887 @default.
- W4292634577 cites W2171808809 @default.
- W4292634577 cites W2307126351 @default.
- W4292634577 cites W2498119267 @default.
- W4292634577 cites W2558161238 @default.
- W4292634577 cites W2582524520 @default.
- W4292634577 cites W2766003287 @default.
- W4292634577 cites W2772130694 @default.
- W4292634577 cites W2802655428 @default.
- W4292634577 cites W2888750097 @default.
- W4292634577 cites W2911250809 @default.
- W4292634577 cites W2911964244 @default.
- W4292634577 cites W3044446509 @default.
- W4292634577 cites W3102476541 @default.
- W4292634577 cites W3201798407 @default.
- W4292634577 cites W3202902530 @default.
- W4292634577 doi "https://doi.org/10.3389/fneur.2022.906257" @default.
- W4292634577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36071894" @default.
- W4292634577 hasPublicationYear "2022" @default.
- W4292634577 type Work @default.
- W4292634577 citedByCount "1" @default.
- W4292634577 crossrefType "journal-article" @default.
- W4292634577 hasAuthorship W4292634577A5001679413 @default.
- W4292634577 hasAuthorship W4292634577A5003132353 @default.
- W4292634577 hasAuthorship W4292634577A5012106415 @default.
- W4292634577 hasAuthorship W4292634577A5012405165 @default.
- W4292634577 hasAuthorship W4292634577A5015159346 @default.
- W4292634577 hasAuthorship W4292634577A5016534058 @default.
- W4292634577 hasAuthorship W4292634577A5019303202 @default.
- W4292634577 hasAuthorship W4292634577A5022338359 @default.
- W4292634577 hasAuthorship W4292634577A5024402158 @default.
- W4292634577 hasAuthorship W4292634577A5028978854 @default.
- W4292634577 hasAuthorship W4292634577A5046271018 @default.
- W4292634577 hasAuthorship W4292634577A5050456628 @default.
- W4292634577 hasAuthorship W4292634577A5052555237 @default.
- W4292634577 hasAuthorship W4292634577A5058073637 @default.
- W4292634577 hasAuthorship W4292634577A5062441935 @default.
- W4292634577 hasAuthorship W4292634577A5086284878 @default.
- W4292634577 hasAuthorship W4292634577A5088147849 @default.
- W4292634577 hasBestOaLocation W42926345771 @default.
- W4292634577 hasConcept C11413529 @default.
- W4292634577 hasConcept C118552586 @default.
- W4292634577 hasConcept C119857082 @default.
- W4292634577 hasConcept C126322002 @default.
- W4292634577 hasConcept C126838900 @default.
- W4292634577 hasConcept C138496976 @default.
- W4292634577 hasConcept C143409427 @default.
- W4292634577 hasConcept C151956035 @default.
- W4292634577 hasConcept C154945302 @default.
- W4292634577 hasConcept C15744967 @default.
- W4292634577 hasConcept C169258074 @default.
- W4292634577 hasConcept C2779134260 @default.
- W4292634577 hasConcept C2779483572 @default.
- W4292634577 hasConcept C2780906993 @default.
- W4292634577 hasConcept C41008148 @default.
- W4292634577 hasConcept C58693492 @default.
- W4292634577 hasConcept C71924100 @default.
- W4292634577 hasConcept C83849319 @default.
- W4292634577 hasConceptScore W4292634577C11413529 @default.