Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292693406> ?p ?o ?g. }
- W4292693406 endingPage "284" @default.
- W4292693406 startingPage "284" @default.
- W4292693406 abstract "Bed shear stress in coarse–bed rivers with vegetation patches is one of the challenging parameters in hydraulic engineering, mechanical engineering, fluvial morphology, and environmental studies. Based on this necessity, in this study, the values of bed shear stress in four reaches of rivers in Iran were estimated and compared using the methods of boundary layer characteristics, logarithmic law, and Darcy–Weisbach. Data collection in this study started in February 2021 and ended in April 2021. Estimation of flow resistance is a key factor in many numerical and physical models. In order to obtain a reasonable evaluation of this factor, it is necessary to measure and calculate the key variables of resistance to flow. Accordingly, the experimental design in this study includes surveying operations, velocity measurement, and sampling of bed sediments. The results show that due to bed forms, vegetation patches, and variations of flow depth and grain size in the river, the universal velocity distribution law (the log law) may not be suitable to estimate the shear velocity, which is a key parameter of flow resistance. This calls for more justifiable methods which are not affected by near–the–bed conditions. Accordingly, a three–parameter flow resistance model is presented, which shows an average error of 17%, indicating the accuracy of the model. The investigation of 71 measured velocity profiles shows the occurrence of the Dip phenomenon in the velocity profiles near the vegetation patches. However, by moving away from the vegetation patches, the effect of this phenomenon is decreased, and the profiles illustrate an S–shaped distribution. The results show that the relative differences between the logarithmic law and Darcy–Weisbach methods compared to the boundary layer characteristics method (BLCM) are equal to 87% and 39%, respectively, indicating a more reasonable agreement between the Darcy–Weisbach method and the boundary layer characteristics method. This is due to the application of key parameters of the boundary layer theory to calculate shear velocity by BLCM. However, to simplify data collection in the field, the application of the Darcy–Weisbach method is suggested." @default.
- W4292693406 created "2022-08-23" @default.
- W4292693406 creator A5004095871 @default.
- W4292693406 creator A5004849205 @default.
- W4292693406 creator A5010602843 @default.
- W4292693406 creator A5017793822 @default.
- W4292693406 creator A5067728993 @default.
- W4292693406 creator A5087104165 @default.
- W4292693406 date "2022-08-22" @default.
- W4292693406 modified "2023-09-26" @default.
- W4292693406 title "Field Study of Three–Parameter Flow Resistance Model in Rivers with Vegetation Patch" @default.
- W4292693406 cites W1969120415 @default.
- W4292693406 cites W1972284837 @default.
- W4292693406 cites W1992482287 @default.
- W4292693406 cites W1992650398 @default.
- W4292693406 cites W1996707344 @default.
- W4292693406 cites W2000920439 @default.
- W4292693406 cites W2017218388 @default.
- W4292693406 cites W2019556437 @default.
- W4292693406 cites W2049665340 @default.
- W4292693406 cites W2072771368 @default.
- W4292693406 cites W2075150251 @default.
- W4292693406 cites W2080574329 @default.
- W4292693406 cites W2089715810 @default.
- W4292693406 cites W2097575346 @default.
- W4292693406 cites W2110223908 @default.
- W4292693406 cites W2110620881 @default.
- W4292693406 cites W2135530338 @default.
- W4292693406 cites W2165770392 @default.
- W4292693406 cites W2289984936 @default.
- W4292693406 cites W2551277399 @default.
- W4292693406 cites W2600046231 @default.
- W4292693406 cites W2770296624 @default.
- W4292693406 cites W2800001681 @default.
- W4292693406 cites W2893547602 @default.
- W4292693406 cites W2898433914 @default.
- W4292693406 cites W2954696400 @default.
- W4292693406 cites W2959285476 @default.
- W4292693406 cites W2985202707 @default.
- W4292693406 cites W3157398107 @default.
- W4292693406 cites W3174010449 @default.
- W4292693406 cites W3206474037 @default.
- W4292693406 cites W4214504411 @default.
- W4292693406 cites W4250384924 @default.
- W4292693406 doi "https://doi.org/10.3390/fluids7080284" @default.
- W4292693406 hasPublicationYear "2022" @default.
- W4292693406 type Work @default.
- W4292693406 citedByCount "0" @default.
- W4292693406 crossrefType "journal-article" @default.
- W4292693406 hasAuthorship W4292693406A5004095871 @default.
- W4292693406 hasAuthorship W4292693406A5004849205 @default.
- W4292693406 hasAuthorship W4292693406A5010602843 @default.
- W4292693406 hasAuthorship W4292693406A5017793822 @default.
- W4292693406 hasAuthorship W4292693406A5067728993 @default.
- W4292693406 hasAuthorship W4292693406A5087104165 @default.
- W4292693406 hasBestOaLocation W42926934061 @default.
- W4292693406 hasConcept C106131492 @default.
- W4292693406 hasConcept C109007969 @default.
- W4292693406 hasConcept C111603439 @default.
- W4292693406 hasConcept C112959462 @default.
- W4292693406 hasConcept C114793014 @default.
- W4292693406 hasConcept C121332964 @default.
- W4292693406 hasConcept C127313418 @default.
- W4292693406 hasConcept C140779682 @default.
- W4292693406 hasConcept C142724271 @default.
- W4292693406 hasConcept C159390177 @default.
- W4292693406 hasConcept C166693061 @default.
- W4292693406 hasConcept C187320778 @default.
- W4292693406 hasConcept C196558001 @default.
- W4292693406 hasConcept C21141959 @default.
- W4292693406 hasConcept C2776133958 @default.
- W4292693406 hasConcept C31972630 @default.
- W4292693406 hasConcept C38349280 @default.
- W4292693406 hasConcept C39432304 @default.
- W4292693406 hasConcept C41008148 @default.
- W4292693406 hasConcept C57879066 @default.
- W4292693406 hasConcept C71924100 @default.
- W4292693406 hasConcept C76886044 @default.
- W4292693406 hasConcept C94656876 @default.
- W4292693406 hasConceptScore W4292693406C106131492 @default.
- W4292693406 hasConceptScore W4292693406C109007969 @default.
- W4292693406 hasConceptScore W4292693406C111603439 @default.
- W4292693406 hasConceptScore W4292693406C112959462 @default.
- W4292693406 hasConceptScore W4292693406C114793014 @default.
- W4292693406 hasConceptScore W4292693406C121332964 @default.
- W4292693406 hasConceptScore W4292693406C127313418 @default.
- W4292693406 hasConceptScore W4292693406C140779682 @default.
- W4292693406 hasConceptScore W4292693406C142724271 @default.
- W4292693406 hasConceptScore W4292693406C159390177 @default.
- W4292693406 hasConceptScore W4292693406C166693061 @default.
- W4292693406 hasConceptScore W4292693406C187320778 @default.
- W4292693406 hasConceptScore W4292693406C196558001 @default.
- W4292693406 hasConceptScore W4292693406C21141959 @default.
- W4292693406 hasConceptScore W4292693406C2776133958 @default.
- W4292693406 hasConceptScore W4292693406C31972630 @default.
- W4292693406 hasConceptScore W4292693406C38349280 @default.
- W4292693406 hasConceptScore W4292693406C39432304 @default.
- W4292693406 hasConceptScore W4292693406C41008148 @default.