Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292703083> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4292703083 endingPage "6870" @default.
- W4292703083 startingPage "6856" @default.
- W4292703083 abstract "To facilitate in silico studies that investigate digital mammography (DM) and breast tomosynthesis (DBT), models replicating the variety in imaging performance of the DM and DBT systems, observed across manufacturers are needed.The main purpose of this work is to develop generic physics models for direct and indirect detector technology used in commercially available systems, with the goal of making them available open source to manufacturers to further tweak and develop the exact in silico replicas of their systems.We recently reported on an in silico version of the SIEMENS Mammomat Inspiration DM/DBT system using an open-source GPU-accelerated Monte Carlo x-ray imaging simulation code (MC-GPU). We build on the previous version of the MC-GPU codes to mimic the imaging performances of two other Food and Drug Administration (FDA)-approved DM/DBT systems, such as Hologic Selenia Dimensions (HSD) and the General Electric Senographe Pristina (GSP) systems. In this work, we developed a hybrid technique to model the optical spread and signal crosstalk observed in the GSP and HSD systems. MC simulations are used to track each x-ray photon till its first interaction within the x-ray detector. On the other hand, the signal spread in the x-ray detectors is modeled using previously developed analytical equations. This approach allows us to preserve the modeling accuracy offered by MC methods in the patient body, while speeding up secondary carrier transport (either electron-hole pairs or optical photons) using analytical equations in the detector. The analytical optical spread model for the indirect detector includes the depth-dependent spread and collection of optical photons and relies on a pre-computed set of point response functions that describe the optical spread as a function of depth. To understand the capabilities of the computational x-ray detector models, we compared image quality metrics like modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE), simulated with our models against measured data. Please note that the purpose of these comparisons with measured data would be to gauge if the model developed as part of this work could replicate commercially used direct and indirect technology in general and not to achieve perfect fits with measured data.We found that the simulated image quality metrics such as MTF, NNPS, and DQE were in reasonable agreement with experimental data. To demonstrate the imaging performance of the three DM/DBT systems, we integrated the detector models with the VICTRE pipeline and simulated DM images of a fatty breast model containing a spiculated mass and a calcium oxalate cluster. In general, we found that the images generated using the indirect model appeared more blurred with a different noise texture and contrast as compared to the systems with direct detectors.We have presented computational models of three commercially available FDA-approved DM/DBT systems, which implement both direct and indirect detector technology. The updated versions of the MC-GPU codes that can be used to replicate three systems are available in open source format through GitHub." @default.
- W4292703083 created "2022-08-23" @default.
- W4292703083 creator A5004081439 @default.
- W4292703083 creator A5031853947 @default.
- W4292703083 creator A5034816801 @default.
- W4292703083 creator A5085240330 @default.
- W4292703083 date "2022-09-23" @default.
- W4292703083 modified "2023-10-12" @default.
- W4292703083 title "Computational models of direct and indirect X‐ray breast imaging detectors for in silico trials" @default.
- W4292703083 cites W1896642585 @default.
- W4292703083 cites W1963930787 @default.
- W4292703083 cites W1968983912 @default.
- W4292703083 cites W1992937272 @default.
- W4292703083 cites W1999182710 @default.
- W4292703083 cites W2010158786 @default.
- W4292703083 cites W2010164501 @default.
- W4292703083 cites W2017494283 @default.
- W4292703083 cites W2018817901 @default.
- W4292703083 cites W2021831311 @default.
- W4292703083 cites W2068159634 @default.
- W4292703083 cites W2102993980 @default.
- W4292703083 cites W2116357175 @default.
- W4292703083 cites W2158732932 @default.
- W4292703083 cites W2163191306 @default.
- W4292703083 cites W2331655572 @default.
- W4292703083 cites W2561150731 @default.
- W4292703083 cites W2583325291 @default.
- W4292703083 cites W2902699143 @default.
- W4292703083 cites W2905378660 @default.
- W4292703083 cites W2952650949 @default.
- W4292703083 cites W826758417 @default.
- W4292703083 doi "https://doi.org/10.1002/mp.15935" @default.
- W4292703083 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35997076" @default.
- W4292703083 hasPublicationYear "2022" @default.
- W4292703083 type Work @default.
- W4292703083 citedByCount "0" @default.
- W4292703083 crossrefType "journal-article" @default.
- W4292703083 hasAuthorship W4292703083A5004081439 @default.
- W4292703083 hasAuthorship W4292703083A5031853947 @default.
- W4292703083 hasAuthorship W4292703083A5034816801 @default.
- W4292703083 hasAuthorship W4292703083A5085240330 @default.
- W4292703083 hasBestOaLocation W42927030831 @default.
- W4292703083 hasConcept C104317684 @default.
- W4292703083 hasConcept C105795698 @default.
- W4292703083 hasConcept C120665830 @default.
- W4292703083 hasConcept C121332964 @default.
- W4292703083 hasConcept C159317903 @default.
- W4292703083 hasConcept C185592680 @default.
- W4292703083 hasConcept C19499675 @default.
- W4292703083 hasConcept C19527891 @default.
- W4292703083 hasConcept C2775905019 @default.
- W4292703083 hasConcept C33923547 @default.
- W4292703083 hasConcept C41008148 @default.
- W4292703083 hasConcept C459310 @default.
- W4292703083 hasConcept C55493867 @default.
- W4292703083 hasConcept C76155785 @default.
- W4292703083 hasConcept C94915269 @default.
- W4292703083 hasConceptScore W4292703083C104317684 @default.
- W4292703083 hasConceptScore W4292703083C105795698 @default.
- W4292703083 hasConceptScore W4292703083C120665830 @default.
- W4292703083 hasConceptScore W4292703083C121332964 @default.
- W4292703083 hasConceptScore W4292703083C159317903 @default.
- W4292703083 hasConceptScore W4292703083C185592680 @default.
- W4292703083 hasConceptScore W4292703083C19499675 @default.
- W4292703083 hasConceptScore W4292703083C19527891 @default.
- W4292703083 hasConceptScore W4292703083C2775905019 @default.
- W4292703083 hasConceptScore W4292703083C33923547 @default.
- W4292703083 hasConceptScore W4292703083C41008148 @default.
- W4292703083 hasConceptScore W4292703083C459310 @default.
- W4292703083 hasConceptScore W4292703083C55493867 @default.
- W4292703083 hasConceptScore W4292703083C76155785 @default.
- W4292703083 hasConceptScore W4292703083C94915269 @default.
- W4292703083 hasFunder F4320332382 @default.
- W4292703083 hasIssue "11" @default.
- W4292703083 hasLocation W42927030831 @default.
- W4292703083 hasLocation W42927030832 @default.
- W4292703083 hasLocation W42927030833 @default.
- W4292703083 hasOpenAccess W4292703083 @default.
- W4292703083 hasPrimaryLocation W42927030831 @default.
- W4292703083 hasRelatedWork W2003194288 @default.
- W4292703083 hasRelatedWork W2032447662 @default.
- W4292703083 hasRelatedWork W2060263731 @default.
- W4292703083 hasRelatedWork W2101501829 @default.
- W4292703083 hasRelatedWork W2912862995 @default.
- W4292703083 hasRelatedWork W2985427592 @default.
- W4292703083 hasRelatedWork W3129816939 @default.
- W4292703083 hasRelatedWork W3168471393 @default.
- W4292703083 hasRelatedWork W391093122 @default.
- W4292703083 hasRelatedWork W4385690457 @default.
- W4292703083 hasVolume "49" @default.
- W4292703083 isParatext "false" @default.
- W4292703083 isRetracted "false" @default.
- W4292703083 workType "article" @default.