Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292707462> ?p ?o ?g. }
- W4292707462 abstract "This study aimed to establish a combined radiomics nomogram to preoperatively predict the risk categorization of thymomas by using contrast-enhanced computed tomography (CE-CT) images.The clinical, pathological, and CT data of 110 patients with thymoma (50 patients with low-risk thymomas and 60 patients with high-risk thymomas) collected in our Hospital from July 2017 to March 2022 were retrospectively analyzed. The study subjects were randomly divided into the training set (n = 77) and validation set (n = 33) in a 7:3 ratio. Radiomics features were extracted from the CT images, and the least absolute shrinkage and selection operator (LASSO) algorithm was performed to select 13 representative features. Five models, including logistic regression (LR), support vector machine (SVM), random forest (RF), decision tree (DT), and gradient boosting decision tree (GBDT) were constructed to predict thymoma risks based on these features. A combined radiomics nomogram was further established based on the clinical factors and radiomics scores. The performance of the models was evaluated using receiver operating characteristic (ROC) curve, DeLong tests, and decision curve analysis.Maximum tumor diameter and boundary were selected to build the clinical factors model. Thirteen features were acquired by LASSO algorithm screening as the optimal features for machine learning model construction. The LR model exhibited the highest AUC value (0.819) among the five machine learning models in the validation set. Furthermore, the radiomics nomogram combining the selected clinical variables and radiomics signature predicted the categorization of thymomas at different risks more effectively (the training set, AUC = 0.923; the validation set, AUC = 0.870). Finally, the calibration curve and DCA were utilized to confirm the clinical value of this combined radiomics nomogram.We demonstrated the clinical diagnostic value of machine learning models based on CT semantic features and the selected clinical variables, providing a non-invasive, appropriate, and accurate method for preoperative prediction of thymomas risk categorization." @default.
- W4292707462 created "2022-08-23" @default.
- W4292707462 creator A5033915840 @default.
- W4292707462 creator A5048537006 @default.
- W4292707462 creator A5054955725 @default.
- W4292707462 creator A5066124123 @default.
- W4292707462 creator A5067993076 @default.
- W4292707462 creator A5068139663 @default.
- W4292707462 creator A5068953861 @default.
- W4292707462 creator A5088664989 @default.
- W4292707462 creator A5089574305 @default.
- W4292707462 date "2022-08-23" @default.
- W4292707462 modified "2023-10-17" @default.
- W4292707462 title "Application of a combined radiomics nomogram based on CE-CT in the preoperative prediction of thymomas risk categorization" @default.
- W4292707462 cites W1875240237 @default.
- W4292707462 cites W2059426167 @default.
- W4292707462 cites W2109364352 @default.
- W4292707462 cites W2119770482 @default.
- W4292707462 cites W2127383078 @default.
- W4292707462 cites W2129582724 @default.
- W4292707462 cites W2147987176 @default.
- W4292707462 cites W2159010834 @default.
- W4292707462 cites W2169357214 @default.
- W4292707462 cites W2174661749 @default.
- W4292707462 cites W2220624243 @default.
- W4292707462 cites W2325765967 @default.
- W4292707462 cites W237461265 @default.
- W4292707462 cites W2593606694 @default.
- W4292707462 cites W2620806461 @default.
- W4292707462 cites W2755496220 @default.
- W4292707462 cites W2763183307 @default.
- W4292707462 cites W2801433791 @default.
- W4292707462 cites W2889261422 @default.
- W4292707462 cites W2922279370 @default.
- W4292707462 cites W2946868693 @default.
- W4292707462 cites W2979828970 @default.
- W4292707462 cites W3000168894 @default.
- W4292707462 cites W3013546867 @default.
- W4292707462 cites W3038512117 @default.
- W4292707462 cites W3044558987 @default.
- W4292707462 cites W3120537376 @default.
- W4292707462 cites W3134563761 @default.
- W4292707462 cites W3209749406 @default.
- W4292707462 cites W4210707894 @default.
- W4292707462 doi "https://doi.org/10.3389/fonc.2022.944005" @default.
- W4292707462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36081562" @default.
- W4292707462 hasPublicationYear "2022" @default.
- W4292707462 type Work @default.
- W4292707462 citedByCount "5" @default.
- W4292707462 countsByYear W42927074622023 @default.
- W4292707462 crossrefType "journal-article" @default.
- W4292707462 hasAuthorship W4292707462A5033915840 @default.
- W4292707462 hasAuthorship W4292707462A5048537006 @default.
- W4292707462 hasAuthorship W4292707462A5054955725 @default.
- W4292707462 hasAuthorship W4292707462A5066124123 @default.
- W4292707462 hasAuthorship W4292707462A5067993076 @default.
- W4292707462 hasAuthorship W4292707462A5068139663 @default.
- W4292707462 hasAuthorship W4292707462A5068953861 @default.
- W4292707462 hasAuthorship W4292707462A5088664989 @default.
- W4292707462 hasAuthorship W4292707462A5089574305 @default.
- W4292707462 hasBestOaLocation W42927074621 @default.
- W4292707462 hasConcept C119857082 @default.
- W4292707462 hasConcept C12267149 @default.
- W4292707462 hasConcept C126322002 @default.
- W4292707462 hasConcept C126838900 @default.
- W4292707462 hasConcept C136764020 @default.
- W4292707462 hasConcept C143998085 @default.
- W4292707462 hasConcept C151956035 @default.
- W4292707462 hasConcept C154945302 @default.
- W4292707462 hasConcept C169258074 @default.
- W4292707462 hasConcept C2778559731 @default.
- W4292707462 hasConcept C34626388 @default.
- W4292707462 hasConcept C37616216 @default.
- W4292707462 hasConcept C41008148 @default.
- W4292707462 hasConcept C58471807 @default.
- W4292707462 hasConcept C71924100 @default.
- W4292707462 hasConcept C84525736 @default.
- W4292707462 hasConcept C94124525 @default.
- W4292707462 hasConceptScore W4292707462C119857082 @default.
- W4292707462 hasConceptScore W4292707462C12267149 @default.
- W4292707462 hasConceptScore W4292707462C126322002 @default.
- W4292707462 hasConceptScore W4292707462C126838900 @default.
- W4292707462 hasConceptScore W4292707462C136764020 @default.
- W4292707462 hasConceptScore W4292707462C143998085 @default.
- W4292707462 hasConceptScore W4292707462C151956035 @default.
- W4292707462 hasConceptScore W4292707462C154945302 @default.
- W4292707462 hasConceptScore W4292707462C169258074 @default.
- W4292707462 hasConceptScore W4292707462C2778559731 @default.
- W4292707462 hasConceptScore W4292707462C34626388 @default.
- W4292707462 hasConceptScore W4292707462C37616216 @default.
- W4292707462 hasConceptScore W4292707462C41008148 @default.
- W4292707462 hasConceptScore W4292707462C58471807 @default.
- W4292707462 hasConceptScore W4292707462C71924100 @default.
- W4292707462 hasConceptScore W4292707462C84525736 @default.
- W4292707462 hasConceptScore W4292707462C94124525 @default.
- W4292707462 hasLocation W42927074621 @default.
- W4292707462 hasLocation W42927074622 @default.
- W4292707462 hasLocation W42927074623 @default.
- W4292707462 hasOpenAccess W4292707462 @default.
- W4292707462 hasPrimaryLocation W42927074621 @default.