Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292757069> ?p ?o ?g. }
- W4292757069 abstract "Abstract Machine learning algorithms are a natural fit for printing fully dense superior metallic parts since 3D printing embodies digital technology like no other manufacturing process. Since traditional machine learning needs a large volume of reliable historical data to optimize many printing variables, the algorithm is augmented with human intelligence derived from the rich knowledge base of metallurgy and physics-based models. The augmentation improves the computational efficiency and makes the problem tractable by enabling the algorithm to use a small set of data. We provide a verifiable quantitative index for achieving fully dense superior parts, facilitate material selection, uncover the hierarchy of important variables that affect the density, and present easy-to-use visual process maps. These findings can improve the quality consistency of 3D printed parts that now limit their greater industrial adaptation. The approach used here can be applied to solve other problems of 3D printing and beyond." @default.
- W4292757069 created "2022-08-23" @default.
- W4292757069 creator A5012122548 @default.
- W4292757069 creator A5021827773 @default.
- W4292757069 creator A5042272787 @default.
- W4292757069 creator A5054166011 @default.
- W4292757069 date "2022-08-23" @default.
- W4292757069 modified "2023-10-11" @default.
- W4292757069 title "Superior printed parts using history and augmented machine learning" @default.
- W4292757069 cites W1901616594 @default.
- W4292757069 cites W1965238929 @default.
- W4292757069 cites W2014734472 @default.
- W4292757069 cites W2017667277 @default.
- W4292757069 cites W2028236214 @default.
- W4292757069 cites W2067801844 @default.
- W4292757069 cites W2073528382 @default.
- W4292757069 cites W2080574972 @default.
- W4292757069 cites W2089783281 @default.
- W4292757069 cites W2132301446 @default.
- W4292757069 cites W2137688709 @default.
- W4292757069 cites W2230132442 @default.
- W4292757069 cites W2302407324 @default.
- W4292757069 cites W2314224951 @default.
- W4292757069 cites W2317803413 @default.
- W4292757069 cites W2409931141 @default.
- W4292757069 cites W2521655568 @default.
- W4292757069 cites W2524254031 @default.
- W4292757069 cites W2567224341 @default.
- W4292757069 cites W2579724168 @default.
- W4292757069 cites W2588489773 @default.
- W4292757069 cites W2743884968 @default.
- W4292757069 cites W2748102273 @default.
- W4292757069 cites W2762367303 @default.
- W4292757069 cites W2799328997 @default.
- W4292757069 cites W2799973040 @default.
- W4292757069 cites W2801201725 @default.
- W4292757069 cites W2801556043 @default.
- W4292757069 cites W2809612304 @default.
- W4292757069 cites W2900061966 @default.
- W4292757069 cites W2900615132 @default.
- W4292757069 cites W2913682305 @default.
- W4292757069 cites W2931697234 @default.
- W4292757069 cites W2944347194 @default.
- W4292757069 cites W2955477706 @default.
- W4292757069 cites W2959026770 @default.
- W4292757069 cites W2966410959 @default.
- W4292757069 cites W2980921441 @default.
- W4292757069 cites W3008345048 @default.
- W4292757069 cites W3016542160 @default.
- W4292757069 cites W3036188520 @default.
- W4292757069 cites W3042177165 @default.
- W4292757069 cites W3090689398 @default.
- W4292757069 cites W3114511254 @default.
- W4292757069 cites W3120629874 @default.
- W4292757069 cites W3159794699 @default.
- W4292757069 cites W3165805510 @default.
- W4292757069 cites W4246165039 @default.
- W4292757069 cites W587588427 @default.
- W4292757069 doi "https://doi.org/10.1038/s41524-022-00866-9" @default.
- W4292757069 hasPublicationYear "2022" @default.
- W4292757069 type Work @default.
- W4292757069 citedByCount "8" @default.
- W4292757069 countsByYear W42927570692022 @default.
- W4292757069 countsByYear W42927570692023 @default.
- W4292757069 crossrefType "journal-article" @default.
- W4292757069 hasAuthorship W4292757069A5012122548 @default.
- W4292757069 hasAuthorship W4292757069A5021827773 @default.
- W4292757069 hasAuthorship W4292757069A5042272787 @default.
- W4292757069 hasAuthorship W4292757069A5054166011 @default.
- W4292757069 hasBestOaLocation W42927570691 @default.
- W4292757069 hasConcept C111472728 @default.
- W4292757069 hasConcept C111919701 @default.
- W4292757069 hasConcept C119857082 @default.
- W4292757069 hasConcept C127413603 @default.
- W4292757069 hasConcept C13736549 @default.
- W4292757069 hasConcept C138885662 @default.
- W4292757069 hasConcept C154945302 @default.
- W4292757069 hasConcept C177264268 @default.
- W4292757069 hasConcept C199360897 @default.
- W4292757069 hasConcept C199639397 @default.
- W4292757069 hasConcept C207239344 @default.
- W4292757069 hasConcept C2776436953 @default.
- W4292757069 hasConcept C2779530757 @default.
- W4292757069 hasConcept C41008148 @default.
- W4292757069 hasConcept C524769229 @default.
- W4292757069 hasConcept C78519656 @default.
- W4292757069 hasConcept C98045186 @default.
- W4292757069 hasConceptScore W4292757069C111472728 @default.
- W4292757069 hasConceptScore W4292757069C111919701 @default.
- W4292757069 hasConceptScore W4292757069C119857082 @default.
- W4292757069 hasConceptScore W4292757069C127413603 @default.
- W4292757069 hasConceptScore W4292757069C13736549 @default.
- W4292757069 hasConceptScore W4292757069C138885662 @default.
- W4292757069 hasConceptScore W4292757069C154945302 @default.
- W4292757069 hasConceptScore W4292757069C177264268 @default.
- W4292757069 hasConceptScore W4292757069C199360897 @default.
- W4292757069 hasConceptScore W4292757069C199639397 @default.
- W4292757069 hasConceptScore W4292757069C207239344 @default.
- W4292757069 hasConceptScore W4292757069C2776436953 @default.
- W4292757069 hasConceptScore W4292757069C2779530757 @default.