Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292760981> ?p ?o ?g. }
- W4292760981 endingPage "2136" @default.
- W4292760981 startingPage "2104" @default.
- W4292760981 abstract "Abstract Slip flows in ducts are important in numerous engineering applications, most notably in microchannel flows. Compared to the standard no‐slip Dirichlet condition, the case of slip formulates as a Robin‐type condition for the fluid tangential velocity. Such an increase in mathematical complexity is accompanied by a more challenging numerical transcription. The present work concerns with this topic, addressing the modeling of the slip velocity boundary condition in the lattice Boltzmann method (LBM) applied to steady slow viscous flows inside ducts of nontrivial shapes. As novelty, we extend the newly revised local second‐order boundary (LSOB) Dirichlet fluid flow method [ Philos. Trans. R. Soc. A 378, 20190404 (2020)] to implement the slip velocity condition within the two‐relaxation‐time (TRT) framework. The LSOB follows an in‐node philosophy where its operation principle seeks to explicitly reconstruct the unknown boundary populations in the form of a third‐order accurate Chapman–Enskog expansion, where the wall slip condition is built‐in as a normal Taylor‐type condition. The key point of this approach is that the required first‐ and second‐order momentum derivatives, rather than computed through nonlocal finite difference approximations, are locally determined through a simple local linear algebra procedure, whose formulation is particularly aided by the TRT symmetry argument. To express the obtained derivatives, two approaches are considered, called and , which operate with node and wall variables, respectively. These two formulations are developed to prescribe the physical slip condition over plane and curved walls, including the corners. Their consistency and accuracy characteristics are examined against alternative linkwise strategies to impose the wall slip velocity, such as the kinetic‐based diffusive bounce‐back scheme, the central linear interpolation slip scheme, and the multireflection slip scheme. The several slip schemes are tested over different 3D microchannel configurations, with walls not conforming with the LBM uniform mesh. Numerical tests confirm the advanced accuracy characteristics of the proposed LSOB slip boundary scheme, revealing the added challenge of the wall slip modeling, and that parabolic accuracy is a necessary requirement to reach second‐order accuracy within this problem class." @default.
- W4292760981 created "2022-08-23" @default.
- W4292760981 creator A5027304927 @default.
- W4292760981 creator A5049382194 @default.
- W4292760981 date "2022-08-26" @default.
- W4292760981 modified "2023-09-26" @default.
- W4292760981 title "Slip velocity boundary conditions for the lattice Boltzmann modeling of microchannel flows" @default.
- W4292760981 cites W1490220820 @default.
- W4292760981 cites W1687992015 @default.
- W4292760981 cites W1972303540 @default.
- W4292760981 cites W1973455510 @default.
- W4292760981 cites W1984000976 @default.
- W4292760981 cites W1984384530 @default.
- W4292760981 cites W1985580373 @default.
- W4292760981 cites W1986598765 @default.
- W4292760981 cites W1987349437 @default.
- W4292760981 cites W1996325534 @default.
- W4292760981 cites W2010367253 @default.
- W4292760981 cites W2012314163 @default.
- W4292760981 cites W2013976274 @default.
- W4292760981 cites W2014413618 @default.
- W4292760981 cites W2016316650 @default.
- W4292760981 cites W2017203278 @default.
- W4292760981 cites W2019104054 @default.
- W4292760981 cites W2019416919 @default.
- W4292760981 cites W2019421148 @default.
- W4292760981 cites W2020733228 @default.
- W4292760981 cites W2025564421 @default.
- W4292760981 cites W2026703439 @default.
- W4292760981 cites W2028777296 @default.
- W4292760981 cites W2031130848 @default.
- W4292760981 cites W2033689403 @default.
- W4292760981 cites W2039105208 @default.
- W4292760981 cites W2039431421 @default.
- W4292760981 cites W2050598089 @default.
- W4292760981 cites W2052302844 @default.
- W4292760981 cites W2053134046 @default.
- W4292760981 cites W2062981202 @default.
- W4292760981 cites W2066857674 @default.
- W4292760981 cites W2072685905 @default.
- W4292760981 cites W2073531850 @default.
- W4292760981 cites W2075474258 @default.
- W4292760981 cites W2079762823 @default.
- W4292760981 cites W2080262178 @default.
- W4292760981 cites W2087497493 @default.
- W4292760981 cites W2105340589 @default.
- W4292760981 cites W2114693935 @default.
- W4292760981 cites W2117242079 @default.
- W4292760981 cites W2132631390 @default.
- W4292760981 cites W2314944726 @default.
- W4292760981 cites W2333547105 @default.
- W4292760981 cites W2335242657 @default.
- W4292760981 cites W2575061902 @default.
- W4292760981 cites W2583334364 @default.
- W4292760981 cites W2596117697 @default.
- W4292760981 cites W2729832944 @default.
- W4292760981 cites W2737588151 @default.
- W4292760981 cites W2753189024 @default.
- W4292760981 cites W2886883488 @default.
- W4292760981 cites W2899113936 @default.
- W4292760981 cites W2989985860 @default.
- W4292760981 cites W3011767190 @default.
- W4292760981 cites W3024365094 @default.
- W4292760981 cites W3036618999 @default.
- W4292760981 cites W3083018251 @default.
- W4292760981 cites W3104198548 @default.
- W4292760981 cites W3119872547 @default.
- W4292760981 cites W3125392815 @default.
- W4292760981 cites W3197244878 @default.
- W4292760981 cites W3199214969 @default.
- W4292760981 cites W4214628711 @default.
- W4292760981 cites W4236387681 @default.
- W4292760981 cites W4236974991 @default.
- W4292760981 cites W4254345639 @default.
- W4292760981 doi "https://doi.org/10.1002/fld.5138" @default.
- W4292760981 hasPublicationYear "2022" @default.
- W4292760981 type Work @default.
- W4292760981 citedByCount "3" @default.
- W4292760981 countsByYear W42927609812023 @default.
- W4292760981 crossrefType "journal-article" @default.
- W4292760981 hasAuthorship W4292760981A5027304927 @default.
- W4292760981 hasAuthorship W4292760981A5049382194 @default.
- W4292760981 hasBestOaLocation W42927609812 @default.
- W4292760981 hasConcept C121332964 @default.
- W4292760981 hasConcept C134306372 @default.
- W4292760981 hasConcept C16304620 @default.
- W4292760981 hasConcept C182310444 @default.
- W4292760981 hasConcept C195268267 @default.
- W4292760981 hasConcept C21821499 @default.
- W4292760981 hasConcept C2524010 @default.
- W4292760981 hasConcept C33923547 @default.
- W4292760981 hasConcept C42045870 @default.
- W4292760981 hasConcept C57879066 @default.
- W4292760981 hasConcept C63662833 @default.
- W4292760981 hasConcept C97355855 @default.
- W4292760981 hasConceptScore W4292760981C121332964 @default.
- W4292760981 hasConceptScore W4292760981C134306372 @default.
- W4292760981 hasConceptScore W4292760981C16304620 @default.