Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292761057> ?p ?o ?g. }
- W4292761057 endingPage "e1057" @default.
- W4292761057 startingPage "e1057" @default.
- W4292761057 abstract "Most stock price predictive models merely rely on the target stock’s historical information to forecast future prices, where the linkage effects between stocks are neglected. However, a group of prior studies has shown that the leverage of correlations between stocks could significantly improve the predictions. This article proposes a unified time-series relational multi-factor model (TRMF), which composes a self-generating relations (SGR) algorithm that can extract relational features automatically. In addition, the TRMF model integrates stock relations with other multiple dimensional features for the price prediction compared to extant works. Experimental validations are performed on the NYSE and NASDAQ data, where the model is compared with the popular methods such as attention Long Short-Term Memory network (Attn-LSTM), Support Vector Regression (SVR), and multi-factor framework (MF). Results show that compared with these extant methods, our model has a higher expected cumulative return rate and a lower risk of return volatility." @default.
- W4292761057 created "2022-08-23" @default.
- W4292761057 creator A5020405656 @default.
- W4292761057 creator A5035358476 @default.
- W4292761057 creator A5059772654 @default.
- W4292761057 creator A5067179533 @default.
- W4292761057 creator A5024558284 @default.
- W4292761057 date "2022-08-11" @default.
- W4292761057 modified "2023-10-01" @default.
- W4292761057 title "GCN-based stock relations analysis for stock market prediction" @default.
- W4292761057 cites W1756968727 @default.
- W4292761057 cites W1966498337 @default.
- W4292761057 cites W2005424446 @default.
- W4292761057 cites W2099227715 @default.
- W4292761057 cites W2116341502 @default.
- W4292761057 cites W2131055507 @default.
- W4292761057 cites W2624385633 @default.
- W4292761057 cites W2734777338 @default.
- W4292761057 cites W2744043447 @default.
- W4292761057 cites W2769087035 @default.
- W4292761057 cites W2784246028 @default.
- W4292761057 cites W2789364533 @default.
- W4292761057 cites W2804101929 @default.
- W4292761057 cites W2895625351 @default.
- W4292761057 cites W2896309423 @default.
- W4292761057 cites W2901504064 @default.
- W4292761057 cites W2905238323 @default.
- W4292761057 cites W3009457452 @default.
- W4292761057 cites W3011681831 @default.
- W4292761057 cites W3020982786 @default.
- W4292761057 cites W3025573255 @default.
- W4292761057 cites W3027790991 @default.
- W4292761057 cites W3058775173 @default.
- W4292761057 cites W3100088615 @default.
- W4292761057 cites W3107642158 @default.
- W4292761057 cites W3108550559 @default.
- W4292761057 cites W3121899577 @default.
- W4292761057 cites W3123329971 @default.
- W4292761057 cites W3134341808 @default.
- W4292761057 cites W4210308499 @default.
- W4292761057 cites W4212932565 @default.
- W4292761057 cites W4213100754 @default.
- W4292761057 cites W4237239309 @default.
- W4292761057 cites W4247901423 @default.
- W4292761057 cites W4376849507 @default.
- W4292761057 doi "https://doi.org/10.7717/peerj-cs.1057" @default.
- W4292761057 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36092004" @default.
- W4292761057 hasPublicationYear "2022" @default.
- W4292761057 type Work @default.
- W4292761057 citedByCount "2" @default.
- W4292761057 countsByYear W42927610572023 @default.
- W4292761057 crossrefType "journal-article" @default.
- W4292761057 hasAuthorship W4292761057A5020405656 @default.
- W4292761057 hasAuthorship W4292761057A5024558284 @default.
- W4292761057 hasAuthorship W4292761057A5035358476 @default.
- W4292761057 hasAuthorship W4292761057A5059772654 @default.
- W4292761057 hasAuthorship W4292761057A5067179533 @default.
- W4292761057 hasBestOaLocation W42927610571 @default.
- W4292761057 hasConcept C105795698 @default.
- W4292761057 hasConcept C119857082 @default.
- W4292761057 hasConcept C12267149 @default.
- W4292761057 hasConcept C124101348 @default.
- W4292761057 hasConcept C127413603 @default.
- W4292761057 hasConcept C149782125 @default.
- W4292761057 hasConcept C151730666 @default.
- W4292761057 hasConcept C153083717 @default.
- W4292761057 hasConcept C154945302 @default.
- W4292761057 hasConcept C162324750 @default.
- W4292761057 hasConcept C178300618 @default.
- W4292761057 hasConcept C204036174 @default.
- W4292761057 hasConcept C2780299701 @default.
- W4292761057 hasConcept C2780762169 @default.
- W4292761057 hasConcept C33923547 @default.
- W4292761057 hasConcept C41008148 @default.
- W4292761057 hasConcept C78458016 @default.
- W4292761057 hasConcept C78519656 @default.
- W4292761057 hasConcept C83546350 @default.
- W4292761057 hasConcept C86803240 @default.
- W4292761057 hasConcept C91602232 @default.
- W4292761057 hasConceptScore W4292761057C105795698 @default.
- W4292761057 hasConceptScore W4292761057C119857082 @default.
- W4292761057 hasConceptScore W4292761057C12267149 @default.
- W4292761057 hasConceptScore W4292761057C124101348 @default.
- W4292761057 hasConceptScore W4292761057C127413603 @default.
- W4292761057 hasConceptScore W4292761057C149782125 @default.
- W4292761057 hasConceptScore W4292761057C151730666 @default.
- W4292761057 hasConceptScore W4292761057C153083717 @default.
- W4292761057 hasConceptScore W4292761057C154945302 @default.
- W4292761057 hasConceptScore W4292761057C162324750 @default.
- W4292761057 hasConceptScore W4292761057C178300618 @default.
- W4292761057 hasConceptScore W4292761057C204036174 @default.
- W4292761057 hasConceptScore W4292761057C2780299701 @default.
- W4292761057 hasConceptScore W4292761057C2780762169 @default.
- W4292761057 hasConceptScore W4292761057C33923547 @default.
- W4292761057 hasConceptScore W4292761057C41008148 @default.
- W4292761057 hasConceptScore W4292761057C78458016 @default.
- W4292761057 hasConceptScore W4292761057C78519656 @default.
- W4292761057 hasConceptScore W4292761057C83546350 @default.