Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292821595> ?p ?o ?g. }
- W4292821595 endingPage "552" @default.
- W4292821595 startingPage "510" @default.
- W4292821595 abstract "Mixtures of multivariate normal inverse Gaussian (MNIG) distributions can be used to cluster data that exhibit features such as skewness and heavy tails. For cluster analysis, using a traditional finite mixture model framework, the number of components either needs to be known a priori or needs to be estimated a posteriori using some model selection criterion after deriving results for a range of possible number of components. However, different model selection criteria can sometimes result in different numbers of components yielding uncertainty. Here, an infinite mixture model framework, also known as Dirichlet process mixture model, is proposed for the mixtures of MNIG distributions. This Dirichlet process mixture model approach allows the number of components to grow or decay freely from 1 to $$infty$$ (in practice from 1 to N) and the number of components is inferred along with the parameter estimates in a Bayesian framework, thus alleviating the need for model selection criteria. We run our algorithm on simulated as well as real benchmark datasets and compare with other clustering approaches. The proposed method provides competitive results for both simulations and real data." @default.
- W4292821595 created "2022-08-24" @default.
- W4292821595 creator A5001026225 @default.
- W4292821595 creator A5022127552 @default.
- W4292821595 creator A5076277565 @default.
- W4292821595 date "2022-08-23" @default.
- W4292821595 modified "2023-10-18" @default.
- W4292821595 title "Infinite Mixtures of Multivariate Normal-Inverse Gaussian Distributions for Clustering of Skewed Data" @default.
- W4292821595 cites W1755019093 @default.
- W4292821595 cites W1964231120 @default.
- W4292821595 cites W1966405376 @default.
- W4292821595 cites W1967687583 @default.
- W4292821595 cites W1977691943 @default.
- W4292821595 cites W1984881674 @default.
- W4292821595 cites W1988764623 @default.
- W4292821595 cites W1994888851 @default.
- W4292821595 cites W2019486793 @default.
- W4292821595 cites W2026414138 @default.
- W4292821595 cites W2029047641 @default.
- W4292821595 cites W2029217165 @default.
- W4292821595 cites W2030109968 @default.
- W4292821595 cites W2038885294 @default.
- W4292821595 cites W2039615557 @default.
- W4292821595 cites W2046343360 @default.
- W4292821595 cites W2057765075 @default.
- W4292821595 cites W2069429561 @default.
- W4292821595 cites W2072169887 @default.
- W4292821595 cites W2073984943 @default.
- W4292821595 cites W2079044534 @default.
- W4292821595 cites W2087101057 @default.
- W4292821595 cites W2089484716 @default.
- W4292821595 cites W2091797506 @default.
- W4292821595 cites W2098439089 @default.
- W4292821595 cites W2109820980 @default.
- W4292821595 cites W2123446302 @default.
- W4292821595 cites W2147307434 @default.
- W4292821595 cites W2148534890 @default.
- W4292821595 cites W2150473224 @default.
- W4292821595 cites W2151383118 @default.
- W4292821595 cites W2168175751 @default.
- W4292821595 cites W2549601578 @default.
- W4292821595 cites W2549651645 @default.
- W4292821595 cites W2594897147 @default.
- W4292821595 cites W2602801322 @default.
- W4292821595 cites W2890024998 @default.
- W4292821595 cites W2920457760 @default.
- W4292821595 cites W2963809259 @default.
- W4292821595 cites W2964255467 @default.
- W4292821595 cites W3009209649 @default.
- W4292821595 cites W3035656905 @default.
- W4292821595 cites W3101380508 @default.
- W4292821595 cites W3171440465 @default.
- W4292821595 cites W4230857432 @default.
- W4292821595 cites W4235169531 @default.
- W4292821595 cites W4248463836 @default.
- W4292821595 cites W4248681815 @default.
- W4292821595 cites W4254499902 @default.
- W4292821595 doi "https://doi.org/10.1007/s00357-022-09417-9" @default.
- W4292821595 hasPublicationYear "2022" @default.
- W4292821595 type Work @default.
- W4292821595 citedByCount "0" @default.
- W4292821595 crossrefType "journal-article" @default.
- W4292821595 hasAuthorship W4292821595A5001026225 @default.
- W4292821595 hasAuthorship W4292821595A5022127552 @default.
- W4292821595 hasAuthorship W4292821595A5076277565 @default.
- W4292821595 hasBestOaLocation W42928215952 @default.
- W4292821595 hasConcept C105795698 @default.
- W4292821595 hasConcept C107673813 @default.
- W4292821595 hasConcept C111472728 @default.
- W4292821595 hasConcept C121332964 @default.
- W4292821595 hasConcept C122342681 @default.
- W4292821595 hasConcept C134306372 @default.
- W4292821595 hasConcept C138885662 @default.
- W4292821595 hasConcept C149872217 @default.
- W4292821595 hasConcept C154945302 @default.
- W4292821595 hasConcept C159985019 @default.
- W4292821595 hasConcept C161584116 @default.
- W4292821595 hasConcept C163716315 @default.
- W4292821595 hasConcept C169214877 @default.
- W4292821595 hasConcept C17212007 @default.
- W4292821595 hasConcept C177384507 @default.
- W4292821595 hasConcept C182310444 @default.
- W4292821595 hasConcept C192562407 @default.
- W4292821595 hasConcept C204323151 @default.
- W4292821595 hasConcept C207467116 @default.
- W4292821595 hasConcept C2524010 @default.
- W4292821595 hasConcept C2781280628 @default.
- W4292821595 hasConcept C28826006 @default.
- W4292821595 hasConcept C33704608 @default.
- W4292821595 hasConcept C33923547 @default.
- W4292821595 hasConcept C41008148 @default.
- W4292821595 hasConcept C61224824 @default.
- W4292821595 hasConcept C61326573 @default.
- W4292821595 hasConcept C62520636 @default.
- W4292821595 hasConcept C73555534 @default.
- W4292821595 hasConcept C75553542 @default.
- W4292821595 hasConcept C81917197 @default.
- W4292821595 hasConcept C93959086 @default.