Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292826164> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4292826164 endingPage "89319" @default.
- W4292826164 startingPage "89308" @default.
- W4292826164 abstract "Technology development and decentralized operations create changes in conventional electric systems, where load modeling has been a challenge in dynamic analysis. Consequently, accurate dynamic load models are required to ensure the quality of the studies in current systems. This paper presents an automatic strategy based on clustering, classification, and optimization algorithms, to obtain the load models in the case of several system operating conditions. The obtained load models can be helpful for the planning and operation of electric power systems. The proposed approach validation is performed using the IEEE 14-bus test system, where high performance is obtained. The average obtained cross-validation error for the load models assigned to the 13 clusters of disturbances is 5.36 × 10<sup>-3</sup>. The cross-validation error is used as a tolerance value to determine when an online assigned load model is suitable to represent the measured disturbance. The proposed tests show the strategy’s capabilities of defining the load model online, making this approach suitable for field applications." @default.
- W4292826164 created "2022-08-24" @default.
- W4292826164 creator A5022835374 @default.
- W4292826164 creator A5024232554 @default.
- W4292826164 creator A5067190220 @default.
- W4292826164 date "2022-01-01" @default.
- W4292826164 modified "2023-09-30" @default.
- W4292826164 title "Automatic Load Model Selection Based on Machine Learning Algorithms" @default.
- W4292826164 cites W1599680004 @default.
- W4292826164 cites W1998955322 @default.
- W4292826164 cites W2021047474 @default.
- W4292826164 cites W2027166703 @default.
- W4292826164 cites W2037418939 @default.
- W4292826164 cites W2056114557 @default.
- W4292826164 cites W2070207746 @default.
- W4292826164 cites W2072305550 @default.
- W4292826164 cites W2095935494 @default.
- W4292826164 cites W2108829714 @default.
- W4292826164 cites W2108915352 @default.
- W4292826164 cites W2117834774 @default.
- W4292826164 cites W2124816894 @default.
- W4292826164 cites W2146119978 @default.
- W4292826164 cites W2174694764 @default.
- W4292826164 cites W2548366117 @default.
- W4292826164 cites W2607152391 @default.
- W4292826164 cites W2610794370 @default.
- W4292826164 cites W2724135207 @default.
- W4292826164 cites W2776453088 @default.
- W4292826164 cites W2782939563 @default.
- W4292826164 cites W2805342704 @default.
- W4292826164 cites W2885418240 @default.
- W4292826164 cites W2909972731 @default.
- W4292826164 cites W2914600616 @default.
- W4292826164 cites W2954192867 @default.
- W4292826164 cites W2972476019 @default.
- W4292826164 cites W2998506103 @default.
- W4292826164 cites W3000279467 @default.
- W4292826164 cites W3016224608 @default.
- W4292826164 cites W3016835000 @default.
- W4292826164 cites W3019005994 @default.
- W4292826164 cites W3034079382 @default.
- W4292826164 cites W3036700726 @default.
- W4292826164 cites W3111415822 @default.
- W4292826164 cites W3111682033 @default.
- W4292826164 cites W3128856284 @default.
- W4292826164 cites W3131393736 @default.
- W4292826164 cites W3132117132 @default.
- W4292826164 cites W3135325266 @default.
- W4292826164 cites W3153001265 @default.
- W4292826164 cites W4206184777 @default.
- W4292826164 cites W4247689375 @default.
- W4292826164 doi "https://doi.org/10.1109/access.2022.3201023" @default.
- W4292826164 hasPublicationYear "2022" @default.
- W4292826164 type Work @default.
- W4292826164 citedByCount "1" @default.
- W4292826164 countsByYear W42928261642022 @default.
- W4292826164 crossrefType "journal-article" @default.
- W4292826164 hasAuthorship W4292826164A5022835374 @default.
- W4292826164 hasAuthorship W4292826164A5024232554 @default.
- W4292826164 hasAuthorship W4292826164A5067190220 @default.
- W4292826164 hasBestOaLocation W42928261641 @default.
- W4292826164 hasConcept C11413529 @default.
- W4292826164 hasConcept C115903868 @default.
- W4292826164 hasConcept C119857082 @default.
- W4292826164 hasConcept C121332964 @default.
- W4292826164 hasConcept C163258240 @default.
- W4292826164 hasConcept C41008148 @default.
- W4292826164 hasConcept C48460631 @default.
- W4292826164 hasConcept C62520636 @default.
- W4292826164 hasConcept C73555534 @default.
- W4292826164 hasConcept C89227174 @default.
- W4292826164 hasConceptScore W4292826164C11413529 @default.
- W4292826164 hasConceptScore W4292826164C115903868 @default.
- W4292826164 hasConceptScore W4292826164C119857082 @default.
- W4292826164 hasConceptScore W4292826164C121332964 @default.
- W4292826164 hasConceptScore W4292826164C163258240 @default.
- W4292826164 hasConceptScore W4292826164C41008148 @default.
- W4292826164 hasConceptScore W4292826164C48460631 @default.
- W4292826164 hasConceptScore W4292826164C62520636 @default.
- W4292826164 hasConceptScore W4292826164C73555534 @default.
- W4292826164 hasConceptScore W4292826164C89227174 @default.
- W4292826164 hasLocation W42928261641 @default.
- W4292826164 hasOpenAccess W4292826164 @default.
- W4292826164 hasPrimaryLocation W42928261641 @default.
- W4292826164 hasRelatedWork W1890613635 @default.
- W4292826164 hasRelatedWork W2139995174 @default.
- W4292826164 hasRelatedWork W2350975147 @default.
- W4292826164 hasRelatedWork W2361300133 @default.
- W4292826164 hasRelatedWork W2361460797 @default.
- W4292826164 hasRelatedWork W2371671441 @default.
- W4292826164 hasRelatedWork W2386767533 @default.
- W4292826164 hasRelatedWork W2386949455 @default.
- W4292826164 hasRelatedWork W2387214962 @default.
- W4292826164 hasRelatedWork W2573131093 @default.
- W4292826164 hasVolume "10" @default.
- W4292826164 isParatext "false" @default.
- W4292826164 isRetracted "false" @default.
- W4292826164 workType "article" @default.