Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292829394> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4292829394 abstract "Vacuum gauges are the key equipment in vacuum inspection equipment, and the surface defects of vacuum gauges will directly affect the inspection performance and service life of vacuum inspection equipment. At present, the surface defect detection of vacuum gauges mainly relies on the visual inspection of workers, which is less efficient and accurate, and the workers are prone to misjudge the products due to subjective factors. To solve the problems of traditional manual inspection, this paper proposes an improved vacuum gauge surface defect detection method based on the YOLOv5s model called VAG-YOLO. we add a multi-scale adaptive fusion structure (MAF) to the YOLOv5s model to make full use of adaptive fusion of features at different scales to improve the detection performance of the network and increase the defect detection accuracy; Meanwhile, the transformer bottleneck structure (BoT) is introduced to combine multi head Self- Attention (MHSA) with convolutional neural network (CNN) to achieve the effect of reducing the number of network parameters and improving the detection speed. The experimental results show that the average detection accuracy of the VGA-YOLO model is 83.4%, which is higher and faster than the detection accuracy of various other algorithms, and can detect vacuum gauge surface defects in real time." @default.
- W4292829394 created "2022-08-24" @default.
- W4292829394 creator A5001198934 @default.
- W4292829394 creator A5020263580 @default.
- W4292829394 creator A5055151897 @default.
- W4292829394 creator A5065562894 @default.
- W4292829394 date "2022-06-23" @default.
- W4292829394 modified "2023-10-16" @default.
- W4292829394 title "A Surface Defect Detection method for vacuum gauges based on VAG-YOLO" @default.
- W4292829394 cites W1988670984 @default.
- W4292829394 cites W2012496675 @default.
- W4292829394 cites W2022896648 @default.
- W4292829394 cites W2157597705 @default.
- W4292829394 cites W2904559969 @default.
- W4292829394 cites W2963351448 @default.
- W4292829394 cites W3034713821 @default.
- W4292829394 cites W3046884570 @default.
- W4292829394 cites W3172509117 @default.
- W4292829394 cites W3196497390 @default.
- W4292829394 doi "https://doi.org/10.1145/3548636.3548638" @default.
- W4292829394 hasPublicationYear "2022" @default.
- W4292829394 type Work @default.
- W4292829394 citedByCount "0" @default.
- W4292829394 crossrefType "proceedings-article" @default.
- W4292829394 hasAuthorship W4292829394A5001198934 @default.
- W4292829394 hasAuthorship W4292829394A5020263580 @default.
- W4292829394 hasAuthorship W4292829394A5055151897 @default.
- W4292829394 hasAuthorship W4292829394A5065562894 @default.
- W4292829394 hasConcept C149635348 @default.
- W4292829394 hasConcept C154945302 @default.
- W4292829394 hasConcept C2780513914 @default.
- W4292829394 hasConcept C31972630 @default.
- W4292829394 hasConcept C41008148 @default.
- W4292829394 hasConcept C79403827 @default.
- W4292829394 hasConcept C81363708 @default.
- W4292829394 hasConceptScore W4292829394C149635348 @default.
- W4292829394 hasConceptScore W4292829394C154945302 @default.
- W4292829394 hasConceptScore W4292829394C2780513914 @default.
- W4292829394 hasConceptScore W4292829394C31972630 @default.
- W4292829394 hasConceptScore W4292829394C41008148 @default.
- W4292829394 hasConceptScore W4292829394C79403827 @default.
- W4292829394 hasConceptScore W4292829394C81363708 @default.
- W4292829394 hasLocation W42928293941 @default.
- W4292829394 hasOpenAccess W4292829394 @default.
- W4292829394 hasPrimaryLocation W42928293941 @default.
- W4292829394 hasRelatedWork W2353647904 @default.
- W4292829394 hasRelatedWork W2354251581 @default.
- W4292829394 hasRelatedWork W2357325779 @default.
- W4292829394 hasRelatedWork W2357461155 @default.
- W4292829394 hasRelatedWork W2374412966 @default.
- W4292829394 hasRelatedWork W2384129116 @default.
- W4292829394 hasRelatedWork W2766721049 @default.
- W4292829394 hasRelatedWork W2955938200 @default.
- W4292829394 hasRelatedWork W3145924829 @default.
- W4292829394 hasRelatedWork W4285900220 @default.
- W4292829394 isParatext "false" @default.
- W4292829394 isRetracted "false" @default.
- W4292829394 workType "article" @default.