Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292868051> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4292868051 endingPage "100051" @default.
- W4292868051 startingPage "100051" @default.
- W4292868051 abstract "Anesthetic agents are widely used for their hypnotic and sedative effects as part of surgical procedures, but despite their widespread use there continues to be suboptimal dosing of the anesthetic to the patients, which necessitates more effective means of monitoring the depth of anesthesia (DoA) as anesthetic agents are administered. Effective means towards DoA monitoring could improve the optimal dosing for each patient to reduce the incidence awareness under general anesthesia and post-operative cognitive dysfunction; as well as reduce the incidence of complications associated with overdosing, such as hypertension. This work presents a novel pilot case study on an ongoing research around more effective means of DoA prediction, where patient-specific models are designed using a combination of signal processing and machine learning alongside electroencephalography (EEG) signals acquired from the frontal cortex. This particular case study investigates the use of various intelligence sources, i.e., machine intelligence, representing unsupervised feature extraction from a convolutional neural network (CNN), and expert-based intelligence via handcrafted features for the prediction of the DoA. It was seen that the handcrafted features provided the highest prediction accuracy across the various patient data, due to the ability to ‘bake-in’ prior knowledge regarding the physics of the process into the feature extraction process. The highest prediction accuracy was seen to be 86.5 ± 9.9 % for the LDA classification model upon pre-processing with the Linear Series Decomposition Learner (LSDL) algorithm. The fusion of both intelligence sources also provided an equivalent prediction accuracy similar to that of the hand-crafted features only." @default.
- W4292868051 created "2022-08-24" @default.
- W4292868051 creator A5026093225 @default.
- W4292868051 creator A5044293813 @default.
- W4292868051 date "2022-12-01" @default.
- W4292868051 modified "2023-10-18" @default.
- W4292868051 title "A pilot on intelligence fusion for anesthesia depth prediction during surgery using frontal cortex neural oscillations" @default.
- W4292868051 cites W1950544107 @default.
- W4292868051 cites W1988881714 @default.
- W4292868051 cites W2017221263 @default.
- W4292868051 cites W2018651439 @default.
- W4292868051 cites W2044670283 @default.
- W4292868051 cites W2077903532 @default.
- W4292868051 cites W2080772690 @default.
- W4292868051 cites W2085318410 @default.
- W4292868051 cites W2103898132 @default.
- W4292868051 cites W2116106036 @default.
- W4292868051 cites W2145487065 @default.
- W4292868051 cites W2153204292 @default.
- W4292868051 cites W2165944663 @default.
- W4292868051 cites W2559148173 @default.
- W4292868051 cites W2753151685 @default.
- W4292868051 cites W2756344646 @default.
- W4292868051 cites W2803756686 @default.
- W4292868051 cites W2898001168 @default.
- W4292868051 cites W2915279277 @default.
- W4292868051 cites W2953166525 @default.
- W4292868051 cites W3037102754 @default.
- W4292868051 cites W3129527190 @default.
- W4292868051 cites W3136821121 @default.
- W4292868051 cites W3153065345 @default.
- W4292868051 cites W3216504393 @default.
- W4292868051 cites W4225395723 @default.
- W4292868051 cites W4240035482 @default.
- W4292868051 cites W4242055917 @default.
- W4292868051 doi "https://doi.org/10.1016/j.bea.2022.100051" @default.
- W4292868051 hasPublicationYear "2022" @default.
- W4292868051 type Work @default.
- W4292868051 citedByCount "1" @default.
- W4292868051 countsByYear W42928680512023 @default.
- W4292868051 crossrefType "journal-article" @default.
- W4292868051 hasAuthorship W4292868051A5026093225 @default.
- W4292868051 hasAuthorship W4292868051A5044293813 @default.
- W4292868051 hasConcept C118552586 @default.
- W4292868051 hasConcept C119857082 @default.
- W4292868051 hasConcept C153180895 @default.
- W4292868051 hasConcept C154945302 @default.
- W4292868051 hasConcept C2777288759 @default.
- W4292868051 hasConcept C2778162923 @default.
- W4292868051 hasConcept C41008148 @default.
- W4292868051 hasConcept C42219234 @default.
- W4292868051 hasConcept C522805319 @default.
- W4292868051 hasConcept C71924100 @default.
- W4292868051 hasConcept C81363708 @default.
- W4292868051 hasConcept C98274493 @default.
- W4292868051 hasConceptScore W4292868051C118552586 @default.
- W4292868051 hasConceptScore W4292868051C119857082 @default.
- W4292868051 hasConceptScore W4292868051C153180895 @default.
- W4292868051 hasConceptScore W4292868051C154945302 @default.
- W4292868051 hasConceptScore W4292868051C2777288759 @default.
- W4292868051 hasConceptScore W4292868051C2778162923 @default.
- W4292868051 hasConceptScore W4292868051C41008148 @default.
- W4292868051 hasConceptScore W4292868051C42219234 @default.
- W4292868051 hasConceptScore W4292868051C522805319 @default.
- W4292868051 hasConceptScore W4292868051C71924100 @default.
- W4292868051 hasConceptScore W4292868051C81363708 @default.
- W4292868051 hasConceptScore W4292868051C98274493 @default.
- W4292868051 hasLocation W42928680511 @default.
- W4292868051 hasLocation W42928680512 @default.
- W4292868051 hasOpenAccess W4292868051 @default.
- W4292868051 hasPrimaryLocation W42928680511 @default.
- W4292868051 hasRelatedWork W2748454020 @default.
- W4292868051 hasRelatedWork W2767651786 @default.
- W4292868051 hasRelatedWork W2912288872 @default.
- W4292868051 hasRelatedWork W2961085424 @default.
- W4292868051 hasRelatedWork W3021430260 @default.
- W4292868051 hasRelatedWork W3027997911 @default.
- W4292868051 hasRelatedWork W3048481171 @default.
- W4292868051 hasRelatedWork W4287776258 @default.
- W4292868051 hasRelatedWork W4306674287 @default.
- W4292868051 hasRelatedWork W564581980 @default.
- W4292868051 hasVolume "4" @default.
- W4292868051 isParatext "false" @default.
- W4292868051 isRetracted "false" @default.
- W4292868051 workType "article" @default.