Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292869392> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4292869392 abstract "<p>Ionospheric irregularities can be caused by from sun activity variations, which may cause irregularities in electron density within the ionospheric layer and, subsequently, plasma perturbations. Typical examples of these irregularities are ionospheric scintillations. The ionospheric irregularities can cause fluctuations in the signal intensity transmitted from the satellite by reducing the signal-to-noise ratio. In addition, scintillation can lead to extreme fluctuations in the phase of a signal transmitted. Ionospheric irregularities originate destructive effects on radio signals transmitted from global navigation satellite systems (GNSS). This phenomenon can generate fluctuations in the signal intensity transmitted from the satellite by decreasing the signal-to-noise ratio of the transmitted wave. The primary purpose of this research will be to detect, model, and predict ionospheric irregularities using a hybrid machine learning algorithm. In addition, using prediction values obtained from the proposed Hybrid models allow measuring the effect of ionospheric perturbations on GNSS ground-based precise positioning accuracy. This modeling and prediction algorithm can contribute to reducing the error of the ionospheric irregularities for satellite-based communication and navigation systems performance. For this purpose, near the equatorial ionization anomaly (EIA), GNSS ground-based stations in South America, are recommended since ionospheric disturbances most impact these regions. The proposed method can play a precaution role in alerting GNSS users that the observation epoch will be disturbed by ionospheric perturbations, and GNSS users can eliminate error-infected observations from the dataset.</p>" @default.
- W4292869392 created "2022-08-24" @default.
- W4292869392 creator A5002770847 @default.
- W4292869392 creator A5007457020 @default.
- W4292869392 creator A5014145696 @default.
- W4292869392 creator A5016934220 @default.
- W4292869392 creator A5034475252 @default.
- W4292869392 creator A5067900255 @default.
- W4292869392 date "2022-08-24" @default.
- W4292869392 modified "2023-09-24" @default.
- W4292869392 title "Prediction of Ionospheric Irregularities using a Combination of Machine Learning Algorithms" @default.
- W4292869392 doi "https://doi.org/10.5194/iag-comm4-2022-42" @default.
- W4292869392 hasPublicationYear "2022" @default.
- W4292869392 type Work @default.
- W4292869392 citedByCount "0" @default.
- W4292869392 crossrefType "posted-content" @default.
- W4292869392 hasAuthorship W4292869392A5002770847 @default.
- W4292869392 hasAuthorship W4292869392A5007457020 @default.
- W4292869392 hasAuthorship W4292869392A5014145696 @default.
- W4292869392 hasAuthorship W4292869392A5016934220 @default.
- W4292869392 hasAuthorship W4292869392A5034475252 @default.
- W4292869392 hasAuthorship W4292869392A5067900255 @default.
- W4292869392 hasConcept C102637530 @default.
- W4292869392 hasConcept C108411613 @default.
- W4292869392 hasConcept C10880902 @default.
- W4292869392 hasConcept C11413529 @default.
- W4292869392 hasConcept C115961682 @default.
- W4292869392 hasConcept C116403925 @default.
- W4292869392 hasConcept C121332964 @default.
- W4292869392 hasConcept C127313418 @default.
- W4292869392 hasConcept C1276947 @default.
- W4292869392 hasConcept C12957241 @default.
- W4292869392 hasConcept C13280743 @default.
- W4292869392 hasConcept C14279187 @default.
- W4292869392 hasConcept C154945302 @default.
- W4292869392 hasConcept C165391973 @default.
- W4292869392 hasConcept C176379880 @default.
- W4292869392 hasConcept C19269812 @default.
- W4292869392 hasConcept C198613851 @default.
- W4292869392 hasConcept C199360897 @default.
- W4292869392 hasConcept C2778027091 @default.
- W4292869392 hasConcept C2779843651 @default.
- W4292869392 hasConcept C41008148 @default.
- W4292869392 hasConcept C60229501 @default.
- W4292869392 hasConcept C62520636 @default.
- W4292869392 hasConcept C62649853 @default.
- W4292869392 hasConcept C72886185 @default.
- W4292869392 hasConcept C76155785 @default.
- W4292869392 hasConcept C8058405 @default.
- W4292869392 hasConcept C82706917 @default.
- W4292869392 hasConcept C94915269 @default.
- W4292869392 hasConcept C99498987 @default.
- W4292869392 hasConceptScore W4292869392C102637530 @default.
- W4292869392 hasConceptScore W4292869392C108411613 @default.
- W4292869392 hasConceptScore W4292869392C10880902 @default.
- W4292869392 hasConceptScore W4292869392C11413529 @default.
- W4292869392 hasConceptScore W4292869392C115961682 @default.
- W4292869392 hasConceptScore W4292869392C116403925 @default.
- W4292869392 hasConceptScore W4292869392C121332964 @default.
- W4292869392 hasConceptScore W4292869392C127313418 @default.
- W4292869392 hasConceptScore W4292869392C1276947 @default.
- W4292869392 hasConceptScore W4292869392C12957241 @default.
- W4292869392 hasConceptScore W4292869392C13280743 @default.
- W4292869392 hasConceptScore W4292869392C14279187 @default.
- W4292869392 hasConceptScore W4292869392C154945302 @default.
- W4292869392 hasConceptScore W4292869392C165391973 @default.
- W4292869392 hasConceptScore W4292869392C176379880 @default.
- W4292869392 hasConceptScore W4292869392C19269812 @default.
- W4292869392 hasConceptScore W4292869392C198613851 @default.
- W4292869392 hasConceptScore W4292869392C199360897 @default.
- W4292869392 hasConceptScore W4292869392C2778027091 @default.
- W4292869392 hasConceptScore W4292869392C2779843651 @default.
- W4292869392 hasConceptScore W4292869392C41008148 @default.
- W4292869392 hasConceptScore W4292869392C60229501 @default.
- W4292869392 hasConceptScore W4292869392C62520636 @default.
- W4292869392 hasConceptScore W4292869392C62649853 @default.
- W4292869392 hasConceptScore W4292869392C72886185 @default.
- W4292869392 hasConceptScore W4292869392C76155785 @default.
- W4292869392 hasConceptScore W4292869392C8058405 @default.
- W4292869392 hasConceptScore W4292869392C82706917 @default.
- W4292869392 hasConceptScore W4292869392C94915269 @default.
- W4292869392 hasConceptScore W4292869392C99498987 @default.
- W4292869392 hasLocation W42928693921 @default.
- W4292869392 hasOpenAccess W4292869392 @default.
- W4292869392 hasPrimaryLocation W42928693921 @default.
- W4292869392 hasRelatedWork W2082907007 @default.
- W4292869392 hasRelatedWork W2253319503 @default.
- W4292869392 hasRelatedWork W2369735781 @default.
- W4292869392 hasRelatedWork W2536398560 @default.
- W4292869392 hasRelatedWork W2551899658 @default.
- W4292869392 hasRelatedWork W2737387262 @default.
- W4292869392 hasRelatedWork W2888032457 @default.
- W4292869392 hasRelatedWork W2951371224 @default.
- W4292869392 hasRelatedWork W3161252401 @default.
- W4292869392 hasRelatedWork W62049724 @default.
- W4292869392 isParatext "false" @default.
- W4292869392 isRetracted "false" @default.
- W4292869392 workType "article" @default.