Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292874098> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4292874098 abstract "In order to realize the rapid identification of engine oil types by infrared spectroscopy (IR), linear discriminant analysis (LDA) was used to reduce the dimension of spectral data, and the characteristic differences of three engine oil types were obtained. The dimensionality reduction data was used as input of Support vector machine(SVM), the identification model of engine oil types is established. A total of 86 samples of three engine oil types were collected. 69 samples were selected as calibration set by Kennard-Stone (K/S) method, and the remaining 17 samples were used as validation set. By setting the LDA threshold parameter, different dimensionality reduction results are obtained. After SVM cross-validation training, the optimal parameters of Linear, Poly, Rbf, and Sigmoid kernel functions are selected. By comparing the prediction results of the calibration set and the validation set, When the kernel function of SVM is sigmoid, the model has good robustness and strong generalization ability. Through LDA-SVM modeling, when the LDA threshold is $10^{-2}$ or $10^{-3}$, the kernel function of SVM is Sigmiod, and the parameter coef equal 1, the accuracy of the calibration set and validation set predicted by the model are both 100%. The LDA-SVM method has a good classification and identification function, and provides a new method for the identification of engine oil types." @default.
- W4292874098 created "2022-08-24" @default.
- W4292874098 creator A5062250759 @default.
- W4292874098 creator A5070412652 @default.
- W4292874098 creator A5088526794 @default.
- W4292874098 date "2022-08-07" @default.
- W4292874098 modified "2023-10-16" @default.
- W4292874098 title "Identification of Engine Oil Types Using IR Based on LDA-SVM Model" @default.
- W4292874098 cites W2158114849 @default.
- W4292874098 cites W3110079249 @default.
- W4292874098 cites W3207927158 @default.
- W4292874098 doi "https://doi.org/10.1109/icma54519.2022.9855987" @default.
- W4292874098 hasPublicationYear "2022" @default.
- W4292874098 type Work @default.
- W4292874098 citedByCount "0" @default.
- W4292874098 crossrefType "proceedings-article" @default.
- W4292874098 hasAuthorship W4292874098A5062250759 @default.
- W4292874098 hasAuthorship W4292874098A5070412652 @default.
- W4292874098 hasAuthorship W4292874098A5088526794 @default.
- W4292874098 hasConcept C104317684 @default.
- W4292874098 hasConcept C105795698 @default.
- W4292874098 hasConcept C114614502 @default.
- W4292874098 hasConcept C122280245 @default.
- W4292874098 hasConcept C12267149 @default.
- W4292874098 hasConcept C153180895 @default.
- W4292874098 hasConcept C154945302 @default.
- W4292874098 hasConcept C165838908 @default.
- W4292874098 hasConcept C185592680 @default.
- W4292874098 hasConcept C33923547 @default.
- W4292874098 hasConcept C41008148 @default.
- W4292874098 hasConcept C50644808 @default.
- W4292874098 hasConcept C55493867 @default.
- W4292874098 hasConcept C63479239 @default.
- W4292874098 hasConcept C69738355 @default.
- W4292874098 hasConcept C70518039 @default.
- W4292874098 hasConcept C74193536 @default.
- W4292874098 hasConcept C75866337 @default.
- W4292874098 hasConcept C81388566 @default.
- W4292874098 hasConceptScore W4292874098C104317684 @default.
- W4292874098 hasConceptScore W4292874098C105795698 @default.
- W4292874098 hasConceptScore W4292874098C114614502 @default.
- W4292874098 hasConceptScore W4292874098C122280245 @default.
- W4292874098 hasConceptScore W4292874098C12267149 @default.
- W4292874098 hasConceptScore W4292874098C153180895 @default.
- W4292874098 hasConceptScore W4292874098C154945302 @default.
- W4292874098 hasConceptScore W4292874098C165838908 @default.
- W4292874098 hasConceptScore W4292874098C185592680 @default.
- W4292874098 hasConceptScore W4292874098C33923547 @default.
- W4292874098 hasConceptScore W4292874098C41008148 @default.
- W4292874098 hasConceptScore W4292874098C50644808 @default.
- W4292874098 hasConceptScore W4292874098C55493867 @default.
- W4292874098 hasConceptScore W4292874098C63479239 @default.
- W4292874098 hasConceptScore W4292874098C69738355 @default.
- W4292874098 hasConceptScore W4292874098C70518039 @default.
- W4292874098 hasConceptScore W4292874098C74193536 @default.
- W4292874098 hasConceptScore W4292874098C75866337 @default.
- W4292874098 hasConceptScore W4292874098C81388566 @default.
- W4292874098 hasLocation W42928740981 @default.
- W4292874098 hasOpenAccess W4292874098 @default.
- W4292874098 hasPrimaryLocation W42928740981 @default.
- W4292874098 hasRelatedWork W1550105856 @default.
- W4292874098 hasRelatedWork W1562318760 @default.
- W4292874098 hasRelatedWork W1756633271 @default.
- W4292874098 hasRelatedWork W2091737176 @default.
- W4292874098 hasRelatedWork W2125244435 @default.
- W4292874098 hasRelatedWork W2153526720 @default.
- W4292874098 hasRelatedWork W2348964713 @default.
- W4292874098 hasRelatedWork W2359837710 @default.
- W4292874098 hasRelatedWork W4323021600 @default.
- W4292874098 hasRelatedWork W43316407 @default.
- W4292874098 isParatext "false" @default.
- W4292874098 isRetracted "false" @default.
- W4292874098 workType "article" @default.