Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292877668> ?p ?o ?g. }
- W4292877668 endingPage "4935" @default.
- W4292877668 startingPage "4935" @default.
- W4292877668 abstract "An automatic electrocardiogram (ECG) myocardial infarction detection system needs to satisfy several requirements to be efficient in real-world practice. These requirements, such as reliability, less complexity, and high performance in decision-making, remain very important in a realistic clinical environment. In this study, we investigated an automatic ECG myocardial infarction detection system and presented a new approach to evaluate its robustness and durability performance in classifying the myocardial infarction (with no feature extraction) under different noise types. We employed three well-known supervised machine learning models: support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF), and tested the performance and robustness of these techniques in classifying normal (NOR) and myocardial infarction (MI) using real ECG records from the PTB database after normalization and segmentation of the data, with a suggested inter-patient paradigm separation as well as noise from the MIT-BIH noise stress test database (NSTDB). Finally, we measured four metrics: accuracy, precision, recall, and F1-score. The simulation revealed that all of the models performed well, with values of over 0.50 at lower SNR levels, in terms of all the metrics investigated against different types of noise, indicating that they are encouraging and acceptable under extreme noise situations are are thus considered sustainable and robust models for specific forms of noise. All of the methods tested could be used as ECG myocardial infarction detection tools in real-world practice under challenging circumstances." @default.
- W4292877668 created "2022-08-24" @default.
- W4292877668 creator A5019316255 @default.
- W4292877668 creator A5033726943 @default.
- W4292877668 creator A5089893325 @default.
- W4292877668 date "2022-08-23" @default.
- W4292877668 modified "2023-10-18" @default.
- W4292877668 title "A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection" @default.
- W4292877668 cites W1964000773 @default.
- W4292877668 cites W1975640002 @default.
- W4292877668 cites W1987396159 @default.
- W4292877668 cites W2003465012 @default.
- W4292877668 cites W2008644554 @default.
- W4292877668 cites W2028354700 @default.
- W4292877668 cites W2032407639 @default.
- W4292877668 cites W2047266047 @default.
- W4292877668 cites W2063921320 @default.
- W4292877668 cites W2075112705 @default.
- W4292877668 cites W2077204677 @default.
- W4292877668 cites W2082589768 @default.
- W4292877668 cites W2117254307 @default.
- W4292877668 cites W2128684764 @default.
- W4292877668 cites W2137409440 @default.
- W4292877668 cites W2154410580 @default.
- W4292877668 cites W2158112071 @default.
- W4292877668 cites W2159566029 @default.
- W4292877668 cites W2163882804 @default.
- W4292877668 cites W2164104048 @default.
- W4292877668 cites W2165772152 @default.
- W4292877668 cites W2568858846 @default.
- W4292877668 cites W2754331792 @default.
- W4292877668 cites W2755499309 @default.
- W4292877668 cites W2775521641 @default.
- W4292877668 cites W2842478360 @default.
- W4292877668 cites W2883553801 @default.
- W4292877668 cites W2884483862 @default.
- W4292877668 cites W2901455448 @default.
- W4292877668 cites W2911964244 @default.
- W4292877668 cites W2917653762 @default.
- W4292877668 cites W2924456201 @default.
- W4292877668 cites W2949570648 @default.
- W4292877668 cites W2961085424 @default.
- W4292877668 cites W2967737346 @default.
- W4292877668 cites W2968157491 @default.
- W4292877668 cites W2971382913 @default.
- W4292877668 cites W2980825080 @default.
- W4292877668 cites W2990628560 @default.
- W4292877668 cites W2993687209 @default.
- W4292877668 cites W3005985192 @default.
- W4292877668 cites W3006339384 @default.
- W4292877668 cites W3016895808 @default.
- W4292877668 cites W3022962499 @default.
- W4292877668 cites W3093635124 @default.
- W4292877668 cites W3095753783 @default.
- W4292877668 cites W3135044385 @default.
- W4292877668 cites W3157065363 @default.
- W4292877668 cites W3209744178 @default.
- W4292877668 cites W3217767020 @default.
- W4292877668 cites W4205653014 @default.
- W4292877668 cites W4211079181 @default.
- W4292877668 cites W4211104669 @default.
- W4292877668 doi "https://doi.org/10.3390/jcm11174935" @default.
- W4292877668 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36078865" @default.
- W4292877668 hasPublicationYear "2022" @default.
- W4292877668 type Work @default.
- W4292877668 citedByCount "2" @default.
- W4292877668 crossrefType "journal-article" @default.
- W4292877668 hasAuthorship W4292877668A5019316255 @default.
- W4292877668 hasAuthorship W4292877668A5033726943 @default.
- W4292877668 hasAuthorship W4292877668A5089893325 @default.
- W4292877668 hasBestOaLocation W42928776681 @default.
- W4292877668 hasConcept C104317684 @default.
- W4292877668 hasConcept C119857082 @default.
- W4292877668 hasConcept C12267149 @default.
- W4292877668 hasConcept C126322002 @default.
- W4292877668 hasConcept C136886441 @default.
- W4292877668 hasConcept C144024400 @default.
- W4292877668 hasConcept C153180895 @default.
- W4292877668 hasConcept C154945302 @default.
- W4292877668 hasConcept C169258074 @default.
- W4292877668 hasConcept C185592680 @default.
- W4292877668 hasConcept C19165224 @default.
- W4292877668 hasConcept C41008148 @default.
- W4292877668 hasConcept C500558357 @default.
- W4292877668 hasConcept C55493867 @default.
- W4292877668 hasConcept C63479239 @default.
- W4292877668 hasConcept C71924100 @default.
- W4292877668 hasConceptScore W4292877668C104317684 @default.
- W4292877668 hasConceptScore W4292877668C119857082 @default.
- W4292877668 hasConceptScore W4292877668C12267149 @default.
- W4292877668 hasConceptScore W4292877668C126322002 @default.
- W4292877668 hasConceptScore W4292877668C136886441 @default.
- W4292877668 hasConceptScore W4292877668C144024400 @default.
- W4292877668 hasConceptScore W4292877668C153180895 @default.
- W4292877668 hasConceptScore W4292877668C154945302 @default.
- W4292877668 hasConceptScore W4292877668C169258074 @default.
- W4292877668 hasConceptScore W4292877668C185592680 @default.
- W4292877668 hasConceptScore W4292877668C19165224 @default.