Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292879108> ?p ?o ?g. }
- W4292879108 endingPage "91" @default.
- W4292879108 startingPage "91" @default.
- W4292879108 abstract "This paper presents an artificial neural network (ANN) approach to the estimation of the Vickers hardness parameter at the weld zone of laser-welded sintered duplex stainless steel. The sintered welded stainless-steel hardness is primarily determined by the sintering conditions and laser welding processing parameters. In the current investigation, the process parameters for both the sintering and welding processes were trained by ANNs machine learning (ML) model using a TensorFlow framework for the microhardness predictions of laser-welded sintered duplex stainless steel (DSS 2507 grade). A neural network is trained using a thorough dataset. The mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and R2 for the train and test data were calculated. The predicted values were in good agreement with the measured hardness values. Based on the results obtained, the ANN method can be effectively used to predict the mechanical properties of materials." @default.
- W4292879108 created "2022-08-24" @default.
- W4292879108 creator A5006961177 @default.
- W4292879108 creator A5025156848 @default.
- W4292879108 creator A5025235330 @default.
- W4292879108 creator A5035285952 @default.
- W4292879108 date "2022-08-23" @default.
- W4292879108 modified "2023-10-18" @default.
- W4292879108 title "Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness" @default.
- W4292879108 cites W1969273329 @default.
- W4292879108 cites W1977911496 @default.
- W4292879108 cites W1980158013 @default.
- W4292879108 cites W2001704976 @default.
- W4292879108 cites W2012497057 @default.
- W4292879108 cites W2019452320 @default.
- W4292879108 cites W2026546470 @default.
- W4292879108 cites W2032329598 @default.
- W4292879108 cites W2051082125 @default.
- W4292879108 cites W2056727718 @default.
- W4292879108 cites W2064844556 @default.
- W4292879108 cites W2065629038 @default.
- W4292879108 cites W2074504279 @default.
- W4292879108 cites W2074736869 @default.
- W4292879108 cites W2152662638 @default.
- W4292879108 cites W2214928895 @default.
- W4292879108 cites W2395404705 @default.
- W4292879108 cites W2511410086 @default.
- W4292879108 cites W2526351474 @default.
- W4292879108 cites W2580299185 @default.
- W4292879108 cites W2613436601 @default.
- W4292879108 cites W2755102063 @default.
- W4292879108 cites W2772141460 @default.
- W4292879108 cites W2803911584 @default.
- W4292879108 cites W2807309237 @default.
- W4292879108 cites W2884430236 @default.
- W4292879108 cites W2885427655 @default.
- W4292879108 cites W2956459408 @default.
- W4292879108 cites W3043290180 @default.
- W4292879108 cites W3050487062 @default.
- W4292879108 cites W3101378854 @default.
- W4292879108 doi "https://doi.org/10.3390/jmmp6050091" @default.
- W4292879108 hasPublicationYear "2022" @default.
- W4292879108 type Work @default.
- W4292879108 citedByCount "3" @default.
- W4292879108 countsByYear W42928791082023 @default.
- W4292879108 crossrefType "journal-article" @default.
- W4292879108 hasAuthorship W4292879108A5006961177 @default.
- W4292879108 hasAuthorship W4292879108A5025156848 @default.
- W4292879108 hasAuthorship W4292879108A5025235330 @default.
- W4292879108 hasAuthorship W4292879108A5035285952 @default.
- W4292879108 hasBestOaLocation W42928791081 @default.
- W4292879108 hasConcept C105795698 @default.
- W4292879108 hasConcept C119599485 @default.
- W4292879108 hasConcept C119857082 @default.
- W4292879108 hasConcept C127413603 @default.
- W4292879108 hasConcept C133392424 @default.
- W4292879108 hasConcept C139945424 @default.
- W4292879108 hasConcept C159985019 @default.
- W4292879108 hasConcept C165720898 @default.
- W4292879108 hasConcept C191897082 @default.
- W4292879108 hasConcept C192562407 @default.
- W4292879108 hasConcept C19474535 @default.
- W4292879108 hasConcept C2776014600 @default.
- W4292879108 hasConcept C2777581544 @default.
- W4292879108 hasConcept C33923547 @default.
- W4292879108 hasConcept C41008148 @default.
- W4292879108 hasConcept C50644808 @default.
- W4292879108 hasConcept C71907059 @default.
- W4292879108 hasConcept C87976508 @default.
- W4292879108 hasConceptScore W4292879108C105795698 @default.
- W4292879108 hasConceptScore W4292879108C119599485 @default.
- W4292879108 hasConceptScore W4292879108C119857082 @default.
- W4292879108 hasConceptScore W4292879108C127413603 @default.
- W4292879108 hasConceptScore W4292879108C133392424 @default.
- W4292879108 hasConceptScore W4292879108C139945424 @default.
- W4292879108 hasConceptScore W4292879108C159985019 @default.
- W4292879108 hasConceptScore W4292879108C165720898 @default.
- W4292879108 hasConceptScore W4292879108C191897082 @default.
- W4292879108 hasConceptScore W4292879108C192562407 @default.
- W4292879108 hasConceptScore W4292879108C19474535 @default.
- W4292879108 hasConceptScore W4292879108C2776014600 @default.
- W4292879108 hasConceptScore W4292879108C2777581544 @default.
- W4292879108 hasConceptScore W4292879108C33923547 @default.
- W4292879108 hasConceptScore W4292879108C41008148 @default.
- W4292879108 hasConceptScore W4292879108C50644808 @default.
- W4292879108 hasConceptScore W4292879108C71907059 @default.
- W4292879108 hasConceptScore W4292879108C87976508 @default.
- W4292879108 hasIssue "5" @default.
- W4292879108 hasLocation W42928791081 @default.
- W4292879108 hasLocation W42928791082 @default.
- W4292879108 hasOpenAccess W4292879108 @default.
- W4292879108 hasPrimaryLocation W42928791081 @default.
- W4292879108 hasRelatedWork W2058545557 @default.
- W4292879108 hasRelatedWork W2062064674 @default.
- W4292879108 hasRelatedWork W2075328642 @default.
- W4292879108 hasRelatedWork W2097829472 @default.
- W4292879108 hasRelatedWork W2245602275 @default.
- W4292879108 hasRelatedWork W2547539111 @default.