Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292941520> ?p ?o ?g. }
- W4292941520 endingPage "109749" @default.
- W4292941520 startingPage "109749" @default.
- W4292941520 abstract "The increasing complexity of real-world applications, especially those related to the Internet of Things and cloud computing, highlights the importance of using hybrid batch-stream processing techniques to analyze big data. Hybrid processing combines the accuracy of batch processing and the speed of stream processing. Among the important challenges of this approach are selecting relevant and diverse features to build the base models and intelligently choosing which of those models to use in computing the final results. We present the H-DIFS architecture, a dynamic and intelligent feature selection approach to address these two challenges of hybrid batch-stream processing for anomaly detection. The proposed architecture employs a dynamic feature selection method based on the genetic algorithm that is fully compatible with the nature of hybrid processing and dynamically changes the models’ features over time based on the input data stream. Additionally, two components, the model evaluator and intelligent model recommender, allow for offering various batch and stream models and selecting from them based on the defined policies. The experimental results, on the datasets with various feature set sizes, indicate that the proposed architecture increases the speed of hybrid processing and anomaly detection by eliminating irrelevant and redundant features. Moreover, it increases detection accuracy by selecting appropriate models and aggregating their results. • Integrating advantages of batch and stream processing in one architecture. • Proposing dynamic feature selection compatible with hybrid processing. • Providing various batch and stream models, and merging their results. • An enhanced solution for accurate real-time anomaly detection." @default.
- W4292941520 created "2022-08-24" @default.
- W4292941520 creator A5002325086 @default.
- W4292941520 creator A5020216791 @default.
- W4292941520 creator A5069843150 @default.
- W4292941520 date "2022-11-01" @default.
- W4292941520 modified "2023-09-27" @default.
- W4292941520 title "A dynamic feature selection and intelligent model serving for hybrid batch-stream processing" @default.
- W4292941520 cites W1553806514 @default.
- W4292941520 cites W1968160919 @default.
- W4292941520 cites W1989352541 @default.
- W4292941520 cites W2001679762 @default.
- W4292941520 cites W2002394060 @default.
- W4292941520 cites W2015627422 @default.
- W4292941520 cites W2036037532 @default.
- W4292941520 cites W2049105561 @default.
- W4292941520 cites W2057608478 @default.
- W4292941520 cites W2069928051 @default.
- W4292941520 cites W2073821686 @default.
- W4292941520 cites W2079957645 @default.
- W4292941520 cites W2109306884 @default.
- W4292941520 cites W2114409719 @default.
- W4292941520 cites W2119565742 @default.
- W4292941520 cites W2126623642 @default.
- W4292941520 cites W2130416896 @default.
- W4292941520 cites W2142045877 @default.
- W4292941520 cites W2153972927 @default.
- W4292941520 cites W2164364358 @default.
- W4292941520 cites W2167277498 @default.
- W4292941520 cites W2173213060 @default.
- W4292941520 cites W2175099382 @default.
- W4292941520 cites W2467405173 @default.
- W4292941520 cites W2513241534 @default.
- W4292941520 cites W2521385614 @default.
- W4292941520 cites W2554382158 @default.
- W4292941520 cites W2568086521 @default.
- W4292941520 cites W2626498001 @default.
- W4292941520 cites W2791315675 @default.
- W4292941520 cites W2806590860 @default.
- W4292941520 cites W2890190333 @default.
- W4292941520 cites W2892145319 @default.
- W4292941520 cites W2911862380 @default.
- W4292941520 cites W2940490924 @default.
- W4292941520 cites W2965015324 @default.
- W4292941520 cites W2965577146 @default.
- W4292941520 cites W2965718579 @default.
- W4292941520 cites W3019040795 @default.
- W4292941520 cites W3025363454 @default.
- W4292941520 cites W3045238515 @default.
- W4292941520 cites W3048412361 @default.
- W4292941520 cites W3100535899 @default.
- W4292941520 cites W3100552002 @default.
- W4292941520 cites W3118300572 @default.
- W4292941520 cites W3119841613 @default.
- W4292941520 cites W3122864121 @default.
- W4292941520 cites W323404752 @default.
- W4292941520 cites W4289236186 @default.
- W4292941520 doi "https://doi.org/10.1016/j.knosys.2022.109749" @default.
- W4292941520 hasPublicationYear "2022" @default.
- W4292941520 type Work @default.
- W4292941520 citedByCount "1" @default.
- W4292941520 countsByYear W42929415202023 @default.
- W4292941520 crossrefType "journal-article" @default.
- W4292941520 hasAuthorship W4292941520A5002325086 @default.
- W4292941520 hasAuthorship W4292941520A5020216791 @default.
- W4292941520 hasAuthorship W4292941520A5069843150 @default.
- W4292941520 hasConcept C107027933 @default.
- W4292941520 hasConcept C120314980 @default.
- W4292941520 hasConcept C138885662 @default.
- W4292941520 hasConcept C148483581 @default.
- W4292941520 hasConcept C154945302 @default.
- W4292941520 hasConcept C2776401178 @default.
- W4292941520 hasConcept C41008148 @default.
- W4292941520 hasConcept C41895202 @default.
- W4292941520 hasConcept C79403827 @default.
- W4292941520 hasConcept C81917197 @default.
- W4292941520 hasConceptScore W4292941520C107027933 @default.
- W4292941520 hasConceptScore W4292941520C120314980 @default.
- W4292941520 hasConceptScore W4292941520C138885662 @default.
- W4292941520 hasConceptScore W4292941520C148483581 @default.
- W4292941520 hasConceptScore W4292941520C154945302 @default.
- W4292941520 hasConceptScore W4292941520C2776401178 @default.
- W4292941520 hasConceptScore W4292941520C41008148 @default.
- W4292941520 hasConceptScore W4292941520C41895202 @default.
- W4292941520 hasConceptScore W4292941520C79403827 @default.
- W4292941520 hasConceptScore W4292941520C81917197 @default.
- W4292941520 hasLocation W42929415201 @default.
- W4292941520 hasOpenAccess W4292941520 @default.
- W4292941520 hasPrimaryLocation W42929415201 @default.
- W4292941520 hasRelatedWork W1587227328 @default.
- W4292941520 hasRelatedWork W1596201972 @default.
- W4292941520 hasRelatedWork W1920964303 @default.
- W4292941520 hasRelatedWork W1967954938 @default.
- W4292941520 hasRelatedWork W2062970599 @default.
- W4292941520 hasRelatedWork W2160425906 @default.
- W4292941520 hasRelatedWork W22997922 @default.
- W4292941520 hasRelatedWork W2350177137 @default.
- W4292941520 hasRelatedWork W2955698379 @default.