Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292974997> ?p ?o ?g. }
- W4292974997 abstract "Abstract The existence of class imbalance in a dataset can greatly bias the classifier towards majority classification. This discrepancy can pose a serious problem for deep learning models, which require copious and diverse amounts of data to learn patterns and output classifications. Traditionally, data-level and algorithm-level techniques have been instrumental in mitigating the adverse effect of class imbalance. With the recent development and proliferation of Generative Adversarial Networks (GANs), researchers across a variety of disciplines have adapted the architecture of GANs and implemented them on imbalanced datasets to generate instances of the underrepresented class(es). Though the bulk of research has been centered on the application of this methodology in computer vision tasks, GANs are likewise being appropriated for use in tabular data, or data consisting of rows and columns with traditional structured data types. In this survey paper, we assess the methodology and efficacy of these modifications on tabular datasets, across domains such network traffic classification and financial transactions over the past seven years. We examine what methodologies and experimental factors have resulted in the greatest machine learning efficacy, as well as the research works and frameworks which have proven most influential in the development of the application of GANs in tabular data settings. Specifically, we note the prevalence of the CGAN architecture, the optimality of novel methods with CNN learners and minority-class sensitive measures such as F1 score, the popularity of SMOTE as a baseline technique, and the improved performance in the year-over-year use of GANs in imbalanced tabular datasets." @default.
- W4292974997 created "2022-08-24" @default.
- W4292974997 creator A5049162954 @default.
- W4292974997 creator A5089170562 @default.
- W4292974997 date "2022-08-22" @default.
- W4292974997 modified "2023-10-03" @default.
- W4292974997 title "The use of generative adversarial networks to alleviate class imbalance in tabular data: a survey" @default.
- W4292974997 cites W163519181 @default.
- W4292974997 cites W1941659294 @default.
- W4292974997 cites W1964234701 @default.
- W4292974997 cites W2011376672 @default.
- W4292974997 cites W2085988980 @default.
- W4292974997 cites W2104167780 @default.
- W4292974997 cites W2107686700 @default.
- W4292974997 cites W2118978333 @default.
- W4292974997 cites W2119168155 @default.
- W4292974997 cites W2131391419 @default.
- W4292974997 cites W2132791018 @default.
- W4292974997 cites W2142402086 @default.
- W4292974997 cites W2148143831 @default.
- W4292974997 cites W2149308034 @default.
- W4292974997 cites W2164330572 @default.
- W4292974997 cites W2171095014 @default.
- W4292974997 cites W2217007515 @default.
- W4292974997 cites W2338318698 @default.
- W4292974997 cites W2343828539 @default.
- W4292974997 cites W2510026128 @default.
- W4292974997 cites W2754549959 @default.
- W4292974997 cites W2756182389 @default.
- W4292974997 cites W2767106145 @default.
- W4292974997 cites W2770942607 @default.
- W4292974997 cites W2772303842 @default.
- W4292974997 cites W2779931100 @default.
- W4292974997 cites W2789828921 @default.
- W4292974997 cites W2806276686 @default.
- W4292974997 cites W2894737833 @default.
- W4292974997 cites W2896480560 @default.
- W4292974997 cites W2901937536 @default.
- W4292974997 cites W2936503027 @default.
- W4292974997 cites W2956745160 @default.
- W4292974997 cites W2962793481 @default.
- W4292974997 cites W2963469976 @default.
- W4292974997 cites W2965940114 @default.
- W4292974997 cites W2981515171 @default.
- W4292974997 cites W2982853004 @default.
- W4292974997 cites W2984789661 @default.
- W4292974997 cites W3013158761 @default.
- W4292974997 cites W3013592437 @default.
- W4292974997 cites W3034271075 @default.
- W4292974997 cites W3045858585 @default.
- W4292974997 cites W3086737406 @default.
- W4292974997 cites W3120644841 @default.
- W4292974997 cites W3127284993 @default.
- W4292974997 cites W3150522965 @default.
- W4292974997 cites W3165102474 @default.
- W4292974997 cites W3174086521 @default.
- W4292974997 cites W3211685611 @default.
- W4292974997 cites W4244735263 @default.
- W4292974997 cites W4288079310 @default.
- W4292974997 doi "https://doi.org/10.1186/s40537-022-00648-6" @default.
- W4292974997 hasPublicationYear "2022" @default.
- W4292974997 type Work @default.
- W4292974997 citedByCount "12" @default.
- W4292974997 countsByYear W42929749972022 @default.
- W4292974997 countsByYear W42929749972023 @default.
- W4292974997 crossrefType "journal-article" @default.
- W4292974997 hasAuthorship W4292974997A5049162954 @default.
- W4292974997 hasAuthorship W4292974997A5089170562 @default.
- W4292974997 hasBestOaLocation W42929749971 @default.
- W4292974997 hasConcept C108583219 @default.
- W4292974997 hasConcept C111368507 @default.
- W4292974997 hasConcept C119857082 @default.
- W4292974997 hasConcept C124101348 @default.
- W4292974997 hasConcept C12725497 @default.
- W4292974997 hasConcept C127313418 @default.
- W4292974997 hasConcept C154945302 @default.
- W4292974997 hasConcept C15744967 @default.
- W4292974997 hasConcept C2522767166 @default.
- W4292974997 hasConcept C2777212361 @default.
- W4292974997 hasConcept C2780586970 @default.
- W4292974997 hasConcept C2988773926 @default.
- W4292974997 hasConcept C37736160 @default.
- W4292974997 hasConcept C39890363 @default.
- W4292974997 hasConcept C41008148 @default.
- W4292974997 hasConcept C77805123 @default.
- W4292974997 hasConcept C95623464 @default.
- W4292974997 hasConceptScore W4292974997C108583219 @default.
- W4292974997 hasConceptScore W4292974997C111368507 @default.
- W4292974997 hasConceptScore W4292974997C119857082 @default.
- W4292974997 hasConceptScore W4292974997C124101348 @default.
- W4292974997 hasConceptScore W4292974997C12725497 @default.
- W4292974997 hasConceptScore W4292974997C127313418 @default.
- W4292974997 hasConceptScore W4292974997C154945302 @default.
- W4292974997 hasConceptScore W4292974997C15744967 @default.
- W4292974997 hasConceptScore W4292974997C2522767166 @default.
- W4292974997 hasConceptScore W4292974997C2777212361 @default.
- W4292974997 hasConceptScore W4292974997C2780586970 @default.
- W4292974997 hasConceptScore W4292974997C2988773926 @default.
- W4292974997 hasConceptScore W4292974997C37736160 @default.
- W4292974997 hasConceptScore W4292974997C39890363 @default.