Matches in SemOpenAlex for { <https://semopenalex.org/work/W4292994870> ?p ?o ?g. }
- W4292994870 endingPage "103" @default.
- W4292994870 startingPage "84" @default.
- W4292994870 abstract "• Climate-responsive coatings adjust their thermo-optical properties in response to boundary conditions. • A transient heat transfer model was developed in MATLAB/Simulink. • Annual heating and cooling energy performance of commercial thermochromic coatings are assessed. • Spectral-selectivity, gradual transmittance change, hysteresis , and switching time are considered. • Results are more promising during cooling seansons, but are evident yearound in continental climates. Windows are often considered the weakest components in the thermal envelope driven by their low thermal resistances and static transmittances to solar gains. While low-E coatings improve the former, climate-responsive coatings that adjust their thermo-optical properties in response to changing boundary conditions are promising to address the latter. In particular, thermochromic films are passive technologies that rely on intrinsic material properties to adapt to varying ambient conditions and are more accessible with simpler structures than their active counterparts; hence, they prevail for solar control applications. However, the nature of current building energy simulation tools imposes limitations on evaluating their performance. In this article, a 1-D transient heat transfer model was developed in MATLAB/Simulink to evaluate the annual heating and cooling energy performance of thermochromic glazing while overcoming several limitations of current building energy simulation tools by accounting for spectral-selectivity, gradual transmittance change, hysteresis behaviour, and delayed switching time. The model was benchmarked against EnergyPlus, and the annual energy performance of a representative room was then evaluated for several double-glazing configurations, window-wall ratios, and exposures in the cold and hot climates of Toronto, ON and Abu Dhabi, UAE, respectively, while quantifying the effects of varying the hysteresis width and switching time. The results showed that commercial thermochromic glazing outperformed clear and low-E windows for both climate conditions. In particular, for a window-wall ratio of 80 % and compared to clear reference glazing, annual energy use intensity reductions up to 6.3 kWh/m 2 and 12 kWh/m 2 were realized in Toronto and Abu Dhabi, respectively, utilizing a glazing configuration that combined exterior thermochromic and interior low-E coated panes, where the latter helped in increasing the former’s temperature causing it to switch at lower ambient temperatures.. While the typical 30-minute switching time of thermochromic coatings was found to increase the annual energy use intensity by up to 0.5 kWh/m 2 , a 5 °C hysteresis reduced the annual cooling energy use intensity by up to 0.2 kWh/m 2 in Abu Dhabi. Less significant effects and savings were found for lower window-wall ratios, particularly in Toronto, where the coating rarely reached temperatures higher than 45 °C." @default.
- W4292994870 created "2022-08-25" @default.
- W4292994870 creator A5025949587 @default.
- W4292994870 creator A5066862137 @default.
- W4292994870 date "2022-09-01" @default.
- W4292994870 modified "2023-10-01" @default.
- W4292994870 title "Energy modelling and saving potential of polymeric solar-responsive thermochromic window films" @default.
- W4292994870 cites W1033615549 @default.
- W4292994870 cites W1717377172 @default.
- W4292994870 cites W1974052117 @default.
- W4292994870 cites W1975226748 @default.
- W4292994870 cites W2024434685 @default.
- W4292994870 cites W2042828810 @default.
- W4292994870 cites W2080953753 @default.
- W4292994870 cites W2088318009 @default.
- W4292994870 cites W2093725711 @default.
- W4292994870 cites W2149574749 @default.
- W4292994870 cites W2298664715 @default.
- W4292994870 cites W2318998031 @default.
- W4292994870 cites W2335571116 @default.
- W4292994870 cites W2415329182 @default.
- W4292994870 cites W2735708854 @default.
- W4292994870 cites W2784558122 @default.
- W4292994870 cites W2789603216 @default.
- W4292994870 cites W2792501520 @default.
- W4292994870 cites W2794243362 @default.
- W4292994870 cites W2794400730 @default.
- W4292994870 cites W2944184095 @default.
- W4292994870 cites W2946513321 @default.
- W4292994870 cites W2946928059 @default.
- W4292994870 cites W2965212210 @default.
- W4292994870 cites W2967904758 @default.
- W4292994870 cites W2974798493 @default.
- W4292994870 cites W3007061517 @default.
- W4292994870 cites W3045336053 @default.
- W4292994870 cites W3057944820 @default.
- W4292994870 cites W3080985213 @default.
- W4292994870 cites W3089293677 @default.
- W4292994870 cites W3102130820 @default.
- W4292994870 cites W3118974012 @default.
- W4292994870 cites W3153845196 @default.
- W4292994870 cites W3169096558 @default.
- W4292994870 cites W3195521387 @default.
- W4292994870 cites W4224305787 @default.
- W4292994870 cites W4224462503 @default.
- W4292994870 cites W4232768107 @default.
- W4292994870 cites W4281730815 @default.
- W4292994870 doi "https://doi.org/10.1016/j.solener.2022.08.008" @default.
- W4292994870 hasPublicationYear "2022" @default.
- W4292994870 type Work @default.
- W4292994870 citedByCount "7" @default.
- W4292994870 countsByYear W42929948702023 @default.
- W4292994870 crossrefType "journal-article" @default.
- W4292994870 hasAuthorship W4292994870A5025949587 @default.
- W4292994870 hasAuthorship W4292994870A5066862137 @default.
- W4292994870 hasConcept C111919701 @default.
- W4292994870 hasConcept C119599485 @default.
- W4292994870 hasConcept C121332964 @default.
- W4292994870 hasConcept C127413603 @default.
- W4292994870 hasConcept C186370098 @default.
- W4292994870 hasConcept C192562407 @default.
- W4292994870 hasConcept C194365794 @default.
- W4292994870 hasConcept C26873012 @default.
- W4292994870 hasConcept C2778751112 @default.
- W4292994870 hasConcept C39432304 @default.
- W4292994870 hasConcept C41008148 @default.
- W4292994870 hasConcept C49040817 @default.
- W4292994870 hasConcept C541104983 @default.
- W4292994870 hasConcept C61696701 @default.
- W4292994870 hasConcept C62520636 @default.
- W4292994870 hasConceptScore W4292994870C111919701 @default.
- W4292994870 hasConceptScore W4292994870C119599485 @default.
- W4292994870 hasConceptScore W4292994870C121332964 @default.
- W4292994870 hasConceptScore W4292994870C127413603 @default.
- W4292994870 hasConceptScore W4292994870C186370098 @default.
- W4292994870 hasConceptScore W4292994870C192562407 @default.
- W4292994870 hasConceptScore W4292994870C194365794 @default.
- W4292994870 hasConceptScore W4292994870C26873012 @default.
- W4292994870 hasConceptScore W4292994870C2778751112 @default.
- W4292994870 hasConceptScore W4292994870C39432304 @default.
- W4292994870 hasConceptScore W4292994870C41008148 @default.
- W4292994870 hasConceptScore W4292994870C49040817 @default.
- W4292994870 hasConceptScore W4292994870C541104983 @default.
- W4292994870 hasConceptScore W4292994870C61696701 @default.
- W4292994870 hasConceptScore W4292994870C62520636 @default.
- W4292994870 hasLocation W42929948701 @default.
- W4292994870 hasOpenAccess W4292994870 @default.
- W4292994870 hasPrimaryLocation W42929948701 @default.
- W4292994870 hasRelatedWork W2058676402 @default.
- W4292994870 hasRelatedWork W2329285141 @default.
- W4292994870 hasRelatedWork W2531126649 @default.
- W4292994870 hasRelatedWork W2899084033 @default.
- W4292994870 hasRelatedWork W2902546961 @default.
- W4292994870 hasRelatedWork W3011364648 @default.
- W4292994870 hasRelatedWork W4251176919 @default.
- W4292994870 hasRelatedWork W4280640527 @default.
- W4292994870 hasRelatedWork W4292994870 @default.
- W4292994870 hasRelatedWork W4313653414 @default.