Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293004810> ?p ?o ?g. }
- W4293004810 endingPage "116131" @default.
- W4293004810 startingPage "116131" @default.
- W4293004810 abstract "In the present context, the global concern on energy consumption and management have been significantly increased due to the environmental issues, such as global warming and greenhouse gas emission. The heating supply is one of the most energy-intensive applications at present, and this study presents an effective model for planning and utilizing a district heating system. Further, the model is applied to a province in Turkey to fulfill environmental, technical, and economic goals. In the first step, indices have been used, including demographics, efficiency of the buildings, and the number of households, to predict the required heating load by support vector regression (SVR) as a supervised machine learning method until 2030. The heat energy demand would be increased by 9% in 2030 compared to 2020. Thereafter, most suitable regions are evaluated to establish district heating systems based on geographic information system (GIS). The classification of Gaziantep province shows that more than 70% of the area is suitable for establishing a solar-based district heating system. The center of the province including Shahinbey, Sehitkamil, and Araban, is the highest priority to integrate a solar energy system into the existing energy system to maximize its share of the energy system. Therefore, in this research, five general scenarios including different combinations of heat pump (HP), solar thermal (ST), photovoltaic (PV) system, battery (BT), and heat storage (HS) are defined and analyzed to determine the most effective scenario, in terms of economic and environmental aspects. Finally, results show all scenarios could reduce the CO2 emissions; however, the combination of ST and HP has the least costs due to the 21.8% reduction in the total primary energy (TPE) supply compared to BAU. Applying solar energy with a heat pump (S5) leads a 37% reduction in CO2 emissions compared to BAU. Overall, the minimum emissions is belonged to scenario 5, including solar heat pump and storage. Moreover, the effects of parameters such as carbon taxes, technological advancements, and electricity prices are evaluated by to sensitivity analysis to confirm the reliability of the results." @default.
- W4293004810 created "2022-08-25" @default.
- W4293004810 creator A5007046076 @default.
- W4293004810 creator A5019949635 @default.
- W4293004810 creator A5057937290 @default.
- W4293004810 creator A5084133928 @default.
- W4293004810 date "2022-10-01" @default.
- W4293004810 modified "2023-10-08" @default.
- W4293004810 title "District heating planning with focus on solar energy and heat pump using GIS and the supervised learning method: Case study of Gaziantep, Turkey" @default.
- W4293004810 cites W1053977484 @default.
- W4293004810 cites W1975390134 @default.
- W4293004810 cites W1978790155 @default.
- W4293004810 cites W1985495743 @default.
- W4293004810 cites W2019749654 @default.
- W4293004810 cites W2041415058 @default.
- W4293004810 cites W2094942552 @default.
- W4293004810 cites W2190060453 @default.
- W4293004810 cites W2256919786 @default.
- W4293004810 cites W2560839709 @default.
- W4293004810 cites W2562985521 @default.
- W4293004810 cites W2739257402 @default.
- W4293004810 cites W2759482805 @default.
- W4293004810 cites W2899714726 @default.
- W4293004810 cites W2912448634 @default.
- W4293004810 cites W2912737670 @default.
- W4293004810 cites W2923884920 @default.
- W4293004810 cites W2954623090 @default.
- W4293004810 cites W2969637476 @default.
- W4293004810 cites W2971967426 @default.
- W4293004810 cites W2977023932 @default.
- W4293004810 cites W3030793642 @default.
- W4293004810 cites W3036168583 @default.
- W4293004810 cites W3082689542 @default.
- W4293004810 cites W3093036970 @default.
- W4293004810 cites W3106552409 @default.
- W4293004810 cites W3106860847 @default.
- W4293004810 cites W3126836827 @default.
- W4293004810 cites W3131417349 @default.
- W4293004810 cites W3150604001 @default.
- W4293004810 cites W3154559602 @default.
- W4293004810 cites W3178391701 @default.
- W4293004810 cites W3207924781 @default.
- W4293004810 cites W3209512929 @default.
- W4293004810 cites W3211737832 @default.
- W4293004810 cites W4207034871 @default.
- W4293004810 cites W4225860165 @default.
- W4293004810 cites W4226020990 @default.
- W4293004810 doi "https://doi.org/10.1016/j.enconman.2022.116131" @default.
- W4293004810 hasPublicationYear "2022" @default.
- W4293004810 type Work @default.
- W4293004810 citedByCount "25" @default.
- W4293004810 countsByYear W42930048102022 @default.
- W4293004810 countsByYear W42930048102023 @default.
- W4293004810 crossrefType "journal-article" @default.
- W4293004810 hasAuthorship W4293004810A5007046076 @default.
- W4293004810 hasAuthorship W4293004810A5019949635 @default.
- W4293004810 hasAuthorship W4293004810A5057937290 @default.
- W4293004810 hasAuthorship W4293004810A5084133928 @default.
- W4293004810 hasBestOaLocation W42930048102 @default.
- W4293004810 hasConcept C107706546 @default.
- W4293004810 hasConcept C119599485 @default.
- W4293004810 hasConcept C127413603 @default.
- W4293004810 hasConcept C134560507 @default.
- W4293004810 hasConcept C147176958 @default.
- W4293004810 hasConcept C162324750 @default.
- W4293004810 hasConcept C166957645 @default.
- W4293004810 hasConcept C183287310 @default.
- W4293004810 hasConcept C188573790 @default.
- W4293004810 hasConcept C18903297 @default.
- W4293004810 hasConcept C205649164 @default.
- W4293004810 hasConcept C2742236 @default.
- W4293004810 hasConcept C2776461528 @default.
- W4293004810 hasConcept C2777031842 @default.
- W4293004810 hasConcept C2777154459 @default.
- W4293004810 hasConcept C2778834244 @default.
- W4293004810 hasConcept C2779343474 @default.
- W4293004810 hasConcept C2780165032 @default.
- W4293004810 hasConcept C39432304 @default.
- W4293004810 hasConcept C41291067 @default.
- W4293004810 hasConcept C41856607 @default.
- W4293004810 hasConcept C47737302 @default.
- W4293004810 hasConcept C541104983 @default.
- W4293004810 hasConcept C62649853 @default.
- W4293004810 hasConcept C78519656 @default.
- W4293004810 hasConcept C86803240 @default.
- W4293004810 hasConcept C87717796 @default.
- W4293004810 hasConceptScore W4293004810C107706546 @default.
- W4293004810 hasConceptScore W4293004810C119599485 @default.
- W4293004810 hasConceptScore W4293004810C127413603 @default.
- W4293004810 hasConceptScore W4293004810C134560507 @default.
- W4293004810 hasConceptScore W4293004810C147176958 @default.
- W4293004810 hasConceptScore W4293004810C162324750 @default.
- W4293004810 hasConceptScore W4293004810C166957645 @default.
- W4293004810 hasConceptScore W4293004810C183287310 @default.
- W4293004810 hasConceptScore W4293004810C188573790 @default.
- W4293004810 hasConceptScore W4293004810C18903297 @default.
- W4293004810 hasConceptScore W4293004810C205649164 @default.
- W4293004810 hasConceptScore W4293004810C2742236 @default.