Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293008980> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4293008980 endingPage "9" @default.
- W4293008980 startingPage "1" @default.
- W4293008980 abstract "With the increasing popularity of the Internet technology, people are now increasingly accustomed to obtaining information or help through the Internet. Meanwhile, the great development of the information service industry has led to the explosive growth of the demand for information service talents. In recent years, many information service talent demand reports have been released in China, and it has an important guiding significance for information service industry planning. However, there are three problems with the information service industry talent demand reports at present. First, the relevance and support of talent demand analysis and forecast to information service industry planning need to be clarified. Second, the coordination and cooperation of information service personnel demand report preparation need to be improved. The third is the wider application of scientific and reasonable information service personnel demand forecasting models. In the future, we need to develop and use more reasonable information service personnel demand forecasting models and improve the quality of information service personnel demand reports. At the same time, the supporting role of the information service industry in scientific planning needs to be strengthened continuously. Therefore, information service industry talent demand forecasting is of great significance. In this paper, a prediction model of information service talent demand is established by using gray system theory. For the deviations of the GM (1, 1) model, a combined GM (1, 1)-BP neural network prediction model is proposed. The simulation results show that the prediction results of the prediction model in this paper are satisfactory. Therefore, the GM (1, 1)-BP model proposed in this paper can be used as a reference for government decision-making and information service personnel training." @default.
- W4293008980 created "2022-08-25" @default.
- W4293008980 creator A5030156852 @default.
- W4293008980 creator A5089178796 @default.
- W4293008980 date "2022-08-24" @default.
- W4293008980 modified "2023-09-27" @default.
- W4293008980 title "Prediction of Information Talent Demand Based on the Grayscale Prediction Model and the BP Neural Network" @default.
- W4293008980 cites W2463616395 @default.
- W4293008980 cites W2761860775 @default.
- W4293008980 cites W2790588927 @default.
- W4293008980 cites W2803099549 @default.
- W4293008980 cites W2810890165 @default.
- W4293008980 cites W2875846317 @default.
- W4293008980 cites W2889386826 @default.
- W4293008980 cites W2897770548 @default.
- W4293008980 cites W2898006685 @default.
- W4293008980 cites W2898330284 @default.
- W4293008980 cites W2920872972 @default.
- W4293008980 cites W2922940182 @default.
- W4293008980 cites W2949361621 @default.
- W4293008980 cites W2962752580 @default.
- W4293008980 cites W2965398306 @default.
- W4293008980 cites W2965441343 @default.
- W4293008980 cites W2981698249 @default.
- W4293008980 cites W2983316365 @default.
- W4293008980 cites W3022964535 @default.
- W4293008980 cites W3081667492 @default.
- W4293008980 doi "https://doi.org/10.1155/2022/4050502" @default.
- W4293008980 hasPublicationYear "2022" @default.
- W4293008980 type Work @default.
- W4293008980 citedByCount "0" @default.
- W4293008980 crossrefType "journal-article" @default.
- W4293008980 hasAuthorship W4293008980A5030156852 @default.
- W4293008980 hasAuthorship W4293008980A5089178796 @default.
- W4293008980 hasBestOaLocation W42930089801 @default.
- W4293008980 hasConcept C110875604 @default.
- W4293008980 hasConcept C111919701 @default.
- W4293008980 hasConcept C119599485 @default.
- W4293008980 hasConcept C120330832 @default.
- W4293008980 hasConcept C121017731 @default.
- W4293008980 hasConcept C127413603 @default.
- W4293008980 hasConcept C136264566 @default.
- W4293008980 hasConcept C136764020 @default.
- W4293008980 hasConcept C144133560 @default.
- W4293008980 hasConcept C15587899 @default.
- W4293008980 hasConcept C15744967 @default.
- W4293008980 hasConcept C162324750 @default.
- W4293008980 hasConcept C162853370 @default.
- W4293008980 hasConcept C175444787 @default.
- W4293008980 hasConcept C180198813 @default.
- W4293008980 hasConcept C191007597 @default.
- W4293008980 hasConcept C193809577 @default.
- W4293008980 hasConcept C2780378061 @default.
- W4293008980 hasConcept C2780586970 @default.
- W4293008980 hasConcept C41008148 @default.
- W4293008980 hasConcept C42475967 @default.
- W4293008980 hasConcept C43246008 @default.
- W4293008980 hasConcept C77805123 @default.
- W4293008980 hasConceptScore W4293008980C110875604 @default.
- W4293008980 hasConceptScore W4293008980C111919701 @default.
- W4293008980 hasConceptScore W4293008980C119599485 @default.
- W4293008980 hasConceptScore W4293008980C120330832 @default.
- W4293008980 hasConceptScore W4293008980C121017731 @default.
- W4293008980 hasConceptScore W4293008980C127413603 @default.
- W4293008980 hasConceptScore W4293008980C136264566 @default.
- W4293008980 hasConceptScore W4293008980C136764020 @default.
- W4293008980 hasConceptScore W4293008980C144133560 @default.
- W4293008980 hasConceptScore W4293008980C15587899 @default.
- W4293008980 hasConceptScore W4293008980C15744967 @default.
- W4293008980 hasConceptScore W4293008980C162324750 @default.
- W4293008980 hasConceptScore W4293008980C162853370 @default.
- W4293008980 hasConceptScore W4293008980C175444787 @default.
- W4293008980 hasConceptScore W4293008980C180198813 @default.
- W4293008980 hasConceptScore W4293008980C191007597 @default.
- W4293008980 hasConceptScore W4293008980C193809577 @default.
- W4293008980 hasConceptScore W4293008980C2780378061 @default.
- W4293008980 hasConceptScore W4293008980C2780586970 @default.
- W4293008980 hasConceptScore W4293008980C41008148 @default.
- W4293008980 hasConceptScore W4293008980C42475967 @default.
- W4293008980 hasConceptScore W4293008980C43246008 @default.
- W4293008980 hasConceptScore W4293008980C77805123 @default.
- W4293008980 hasLocation W42930089801 @default.
- W4293008980 hasOpenAccess W4293008980 @default.
- W4293008980 hasPrimaryLocation W42930089801 @default.
- W4293008980 hasRelatedWork W1520700478 @default.
- W4293008980 hasRelatedWork W2352975370 @default.
- W4293008980 hasRelatedWork W2364472770 @default.
- W4293008980 hasRelatedWork W2365510171 @default.
- W4293008980 hasRelatedWork W2368413952 @default.
- W4293008980 hasRelatedWork W2368672067 @default.
- W4293008980 hasRelatedWork W2375545241 @default.
- W4293008980 hasRelatedWork W2380200465 @default.
- W4293008980 hasRelatedWork W4293008980 @default.
- W4293008980 hasRelatedWork W2524926753 @default.
- W4293008980 hasVolume "2022" @default.
- W4293008980 isParatext "false" @default.
- W4293008980 isRetracted "false" @default.
- W4293008980 workType "article" @default.