Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293026613> ?p ?o ?g. }
- W4293026613 endingPage "106401" @default.
- W4293026613 startingPage "106401" @default.
- W4293026613 abstract "Aerosols affect air quality, weather and climate through many mechanisms and are dangerous to human health. They are mostly concentrated within the atmospheric boundary layer (ABL) its height is affected by the radiation emitted by the surface, causing turbulence and evolving along the day, influencing the vertical mixing of the air pollutants generated near the surface and therefore, their ground-level concentration from local sources. Lidars have demonstrated their capabilities to study the aerosol vertical distribution and their spatio-temporal evolution can provide very complete information on the ABL dynamics. In this work, machine learning techniques are employed to predict the ABL height. The meteorological variables measured at ground-level are used as features of the algorithm and the ABL height estimated by the STRATfinder algorithm using ceilometer profiles, a small lidar instrument with enhanced characteristics for unassisted continuous operation, are considered the truth in the supervised regression algorithm. The machine learning models allow considering combination of features in the regression algorithm and also allow characterizing the importance of each of the predictors to determine the final result. This property is used to study different boundary layer regimes. The ABL is difficult to study in certain parts of the day due to transitions between atmospheric regimes. In order to improve the performance of the model, each day was divided in four parts (nighttime, morning, daytime and evening). The Madrid ceilometer profile database has been studied for the year 2020, splitting the training datasets for the machine learning algorithm into season and part of the day, and the importance of predictors analyzed. Major influence of temperature and relative humidity is found in most of the situations, but also wind velocity in certain circumstances and pressure. The influence of radiation is small, contrary to expected. The main advantage of the proposed method is that MLHs and ABLHs can be retrieved directly from widely available ground-level meteorological data. Future work will focus on more relevant predictors, as latent heat or turbulence." @default.
- W4293026613 created "2022-08-25" @default.
- W4293026613 creator A5021338981 @default.
- W4293026613 creator A5048300426 @default.
- W4293026613 creator A5074733354 @default.
- W4293026613 date "2022-12-01" @default.
- W4293026613 modified "2023-10-18" @default.
- W4293026613 title "Estimation of the atmospheric boundary layer height by means of machine learning techniques using ground-level meteorological data" @default.
- W4293026613 cites W1498635984 @default.
- W4293026613 cites W1537618420 @default.
- W4293026613 cites W1538506180 @default.
- W4293026613 cites W1551705797 @default.
- W4293026613 cites W1656281027 @default.
- W4293026613 cites W1970095424 @default.
- W4293026613 cites W1983020424 @default.
- W4293026613 cites W1986515151 @default.
- W4293026613 cites W1986694497 @default.
- W4293026613 cites W1996931125 @default.
- W4293026613 cites W1998354984 @default.
- W4293026613 cites W2002456555 @default.
- W4293026613 cites W2012540941 @default.
- W4293026613 cites W2012938054 @default.
- W4293026613 cites W2019162306 @default.
- W4293026613 cites W2023799505 @default.
- W4293026613 cites W2032533256 @default.
- W4293026613 cites W2047229907 @default.
- W4293026613 cites W2076665311 @default.
- W4293026613 cites W2095852053 @default.
- W4293026613 cites W2099486672 @default.
- W4293026613 cites W2136263534 @default.
- W4293026613 cites W2152320768 @default.
- W4293026613 cites W2157862942 @default.
- W4293026613 cites W2160282144 @default.
- W4293026613 cites W2169528473 @default.
- W4293026613 cites W2549256837 @default.
- W4293026613 cites W2580528271 @default.
- W4293026613 cites W2601923741 @default.
- W4293026613 cites W2605172292 @default.
- W4293026613 cites W2953978338 @default.
- W4293026613 cites W2969695372 @default.
- W4293026613 cites W3091863318 @default.
- W4293026613 cites W4200591578 @default.
- W4293026613 doi "https://doi.org/10.1016/j.atmosres.2022.106401" @default.
- W4293026613 hasPublicationYear "2022" @default.
- W4293026613 type Work @default.
- W4293026613 citedByCount "5" @default.
- W4293026613 countsByYear W42930266132023 @default.
- W4293026613 crossrefType "journal-article" @default.
- W4293026613 hasAuthorship W4293026613A5021338981 @default.
- W4293026613 hasAuthorship W4293026613A5048300426 @default.
- W4293026613 hasAuthorship W4293026613A5074733354 @default.
- W4293026613 hasConcept C111603439 @default.
- W4293026613 hasConcept C11413529 @default.
- W4293026613 hasConcept C119857082 @default.
- W4293026613 hasConcept C127313418 @default.
- W4293026613 hasConcept C127413603 @default.
- W4293026613 hasConcept C146849305 @default.
- W4293026613 hasConcept C146978453 @default.
- W4293026613 hasConcept C153294291 @default.
- W4293026613 hasConcept C162725370 @default.
- W4293026613 hasConcept C189680139 @default.
- W4293026613 hasConcept C196558001 @default.
- W4293026613 hasConcept C199641428 @default.
- W4293026613 hasConcept C205649164 @default.
- W4293026613 hasConcept C2779345167 @default.
- W4293026613 hasConcept C2780063094 @default.
- W4293026613 hasConcept C39432304 @default.
- W4293026613 hasConcept C41008148 @default.
- W4293026613 hasConcept C51399673 @default.
- W4293026613 hasConcept C62649853 @default.
- W4293026613 hasConcept C86338904 @default.
- W4293026613 hasConcept C91586092 @default.
- W4293026613 hasConceptScore W4293026613C111603439 @default.
- W4293026613 hasConceptScore W4293026613C11413529 @default.
- W4293026613 hasConceptScore W4293026613C119857082 @default.
- W4293026613 hasConceptScore W4293026613C127313418 @default.
- W4293026613 hasConceptScore W4293026613C127413603 @default.
- W4293026613 hasConceptScore W4293026613C146849305 @default.
- W4293026613 hasConceptScore W4293026613C146978453 @default.
- W4293026613 hasConceptScore W4293026613C153294291 @default.
- W4293026613 hasConceptScore W4293026613C162725370 @default.
- W4293026613 hasConceptScore W4293026613C189680139 @default.
- W4293026613 hasConceptScore W4293026613C196558001 @default.
- W4293026613 hasConceptScore W4293026613C199641428 @default.
- W4293026613 hasConceptScore W4293026613C205649164 @default.
- W4293026613 hasConceptScore W4293026613C2779345167 @default.
- W4293026613 hasConceptScore W4293026613C2780063094 @default.
- W4293026613 hasConceptScore W4293026613C39432304 @default.
- W4293026613 hasConceptScore W4293026613C41008148 @default.
- W4293026613 hasConceptScore W4293026613C51399673 @default.
- W4293026613 hasConceptScore W4293026613C62649853 @default.
- W4293026613 hasConceptScore W4293026613C86338904 @default.
- W4293026613 hasConceptScore W4293026613C91586092 @default.
- W4293026613 hasLocation W42930266131 @default.
- W4293026613 hasOpenAccess W4293026613 @default.
- W4293026613 hasPrimaryLocation W42930266131 @default.
- W4293026613 hasRelatedWork W1886883085 @default.
- W4293026613 hasRelatedWork W1975174365 @default.