Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293030669> ?p ?o ?g. }
- W4293030669 endingPage "1494" @default.
- W4293030669 startingPage "1494" @default.
- W4293030669 abstract "Genomic selection (GS) changed the way plant breeders select genotypes. GS takes advantage of phenotypic and genotypic information to training a statistical machine learning model, which is used to predict phenotypic (or breeding) values of new lines for which only genotypic information is available. Therefore, many statistical machine learning methods have been proposed for this task. Multi-trait (MT) genomic prediction models take advantage of correlated traits to improve prediction accuracy. Therefore, some multivariate statistical machine learning methods are popular for GS. In this paper, we compare the prediction performance of three MT methods: the MT genomic best linear unbiased predictor (GBLUP), the MT partial least squares (PLS) and the multi-trait random forest (RF) methods. Benchmarking was performed with six real datasets. We found that the three investigated methods produce similar results, but under predictors with genotype (G) and environment (E), that is, E + G, the MT GBLUP achieved superior performance, whereas under predictors E + G + genotype × environment (GE) and G + GE, random forest achieved the best results. We also found that the best predictions were achieved under the predictors E + G and E + G + GE. Here, we also provide the R code for the implementation of these three statistical machine learning methods in the sparse kernel method (SKM) library, which offers not only options for single-trait prediction with various statistical machine learning methods but also some options for MT predictions that can help to capture improved complex patterns in datasets that are common in genomic selection." @default.
- W4293030669 created "2022-08-25" @default.
- W4293030669 creator A5018377266 @default.
- W4293030669 creator A5027352812 @default.
- W4293030669 creator A5031038442 @default.
- W4293030669 creator A5049389291 @default.
- W4293030669 creator A5053601980 @default.
- W4293030669 creator A5076158905 @default.
- W4293030669 date "2022-08-21" @default.
- W4293030669 modified "2023-10-18" @default.
- W4293030669 title "A Comparison of Three Machine Learning Methods for Multivariate Genomic Prediction Using the Sparse Kernels Method (SKM) Library" @default.
- W4293030669 cites W1219574734 @default.
- W4293030669 cites W191324832 @default.
- W4293030669 cites W1970149620 @default.
- W4293030669 cites W2003201326 @default.
- W4293030669 cites W2036577577 @default.
- W4293030669 cites W2067715889 @default.
- W4293030669 cites W2084956990 @default.
- W4293030669 cites W2097057782 @default.
- W4293030669 cites W2110035718 @default.
- W4293030669 cites W2131112579 @default.
- W4293030669 cites W2140959043 @default.
- W4293030669 cites W2159474015 @default.
- W4293030669 cites W2165949883 @default.
- W4293030669 cites W2310742968 @default.
- W4293030669 cites W2413617977 @default.
- W4293030669 cites W2431344869 @default.
- W4293030669 cites W2553786903 @default.
- W4293030669 cites W2564688219 @default.
- W4293030669 cites W2760544538 @default.
- W4293030669 cites W2896893308 @default.
- W4293030669 cites W2898312686 @default.
- W4293030669 cites W2899229175 @default.
- W4293030669 cites W2911964244 @default.
- W4293030669 cites W2916756847 @default.
- W4293030669 cites W2951374078 @default.
- W4293030669 cites W2965916380 @default.
- W4293030669 cites W2969768329 @default.
- W4293030669 cites W2983803089 @default.
- W4293030669 cites W3046999076 @default.
- W4293030669 cites W3057937542 @default.
- W4293030669 cites W3080096554 @default.
- W4293030669 cites W3128559770 @default.
- W4293030669 cites W4281651818 @default.
- W4293030669 cites W4284974258 @default.
- W4293030669 doi "https://doi.org/10.3390/genes13081494" @default.
- W4293030669 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36011405" @default.
- W4293030669 hasPublicationYear "2022" @default.
- W4293030669 type Work @default.
- W4293030669 citedByCount "4" @default.
- W4293030669 countsByYear W42930306692022 @default.
- W4293030669 countsByYear W42930306692023 @default.
- W4293030669 crossrefType "journal-article" @default.
- W4293030669 hasAuthorship W4293030669A5018377266 @default.
- W4293030669 hasAuthorship W4293030669A5027352812 @default.
- W4293030669 hasAuthorship W4293030669A5031038442 @default.
- W4293030669 hasAuthorship W4293030669A5049389291 @default.
- W4293030669 hasAuthorship W4293030669A5053601980 @default.
- W4293030669 hasAuthorship W4293030669A5076158905 @default.
- W4293030669 hasBestOaLocation W42930306691 @default.
- W4293030669 hasConcept C105795698 @default.
- W4293030669 hasConcept C106934330 @default.
- W4293030669 hasConcept C114614502 @default.
- W4293030669 hasConcept C119857082 @default.
- W4293030669 hasConcept C12267149 @default.
- W4293030669 hasConcept C144133560 @default.
- W4293030669 hasConcept C154945302 @default.
- W4293030669 hasConcept C161584116 @default.
- W4293030669 hasConcept C162853370 @default.
- W4293030669 hasConcept C169258074 @default.
- W4293030669 hasConcept C199360897 @default.
- W4293030669 hasConcept C33923547 @default.
- W4293030669 hasConcept C41008148 @default.
- W4293030669 hasConcept C74193536 @default.
- W4293030669 hasConcept C81917197 @default.
- W4293030669 hasConcept C86251818 @default.
- W4293030669 hasConceptScore W4293030669C105795698 @default.
- W4293030669 hasConceptScore W4293030669C106934330 @default.
- W4293030669 hasConceptScore W4293030669C114614502 @default.
- W4293030669 hasConceptScore W4293030669C119857082 @default.
- W4293030669 hasConceptScore W4293030669C12267149 @default.
- W4293030669 hasConceptScore W4293030669C144133560 @default.
- W4293030669 hasConceptScore W4293030669C154945302 @default.
- W4293030669 hasConceptScore W4293030669C161584116 @default.
- W4293030669 hasConceptScore W4293030669C162853370 @default.
- W4293030669 hasConceptScore W4293030669C169258074 @default.
- W4293030669 hasConceptScore W4293030669C199360897 @default.
- W4293030669 hasConceptScore W4293030669C33923547 @default.
- W4293030669 hasConceptScore W4293030669C41008148 @default.
- W4293030669 hasConceptScore W4293030669C74193536 @default.
- W4293030669 hasConceptScore W4293030669C81917197 @default.
- W4293030669 hasConceptScore W4293030669C86251818 @default.
- W4293030669 hasFunder F4320306137 @default.
- W4293030669 hasIssue "8" @default.
- W4293030669 hasLocation W42930306691 @default.
- W4293030669 hasLocation W42930306692 @default.
- W4293030669 hasLocation W42930306693 @default.
- W4293030669 hasLocation W42930306694 @default.