Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293042013> ?p ?o ?g. }
- W4293042013 endingPage "083201" @default.
- W4293042013 startingPage "083201" @default.
- W4293042013 abstract "Rare events play a crucial role in many physics, chemistry, and biology phenomena, when they change the structure of the system, for instance in the case of multistability, or when they have a huge impact. Rare event algorithms have been devised to simulate them efficiently, avoiding the computation of long periods of typical fluctuations. We consider here the family of splitting or cloning algorithms, which are versatile and specifically suited for far-from-equilibrium dynamics. To be efficient, these algorithms need to use a smart score function during the selection stage. Committor functions are the optimal score functions. In this work we propose a new approach, based on the analogue Markov chain, for a data-based learning of approximate committor functions. We demonstrate that such learned committor functions are extremely efficient score functions when used with the Adaptive Multilevel Splitting algorithm. We illustrate our approach for a gradient dynamics in a three-well potential, and for the Charney-DeVore model, which is a paradigmatic toy model of multistability for atmospheric dynamics. For these two dynamics, we show that having observed a few transitions is enough to have a very efficient data-based score function for the rare event algorithm. This new approach is promising for use for complex dynamics: the rare events can be simulated with a minimal prior knowledge and the results are much more precise than those obtained with a user-designed score function." @default.
- W4293042013 created "2022-08-25" @default.
- W4293042013 creator A5025888920 @default.
- W4293042013 creator A5039839893 @default.
- W4293042013 creator A5043527868 @default.
- W4293042013 creator A5082195595 @default.
- W4293042013 date "2022-08-01" @default.
- W4293042013 modified "2023-10-16" @default.
- W4293042013 title "Coupling rare event algorithms with data-based learned committor functions using the analogue Markov chain" @default.
- W4293042013 cites W1176252425 @default.
- W4293042013 cites W1518747218 @default.
- W4293042013 cites W1967722756 @default.
- W4293042013 cites W1971008678 @default.
- W4293042013 cites W1975495365 @default.
- W4293042013 cites W1979070806 @default.
- W4293042013 cites W1981280406 @default.
- W4293042013 cites W1982358729 @default.
- W4293042013 cites W1982370786 @default.
- W4293042013 cites W1984568974 @default.
- W4293042013 cites W1985258161 @default.
- W4293042013 cites W2003582562 @default.
- W4293042013 cites W2010005232 @default.
- W4293042013 cites W2022794769 @default.
- W4293042013 cites W2031843459 @default.
- W4293042013 cites W2033169180 @default.
- W4293042013 cites W2034588787 @default.
- W4293042013 cites W2037393162 @default.
- W4293042013 cites W2046290306 @default.
- W4293042013 cites W2053391349 @default.
- W4293042013 cites W2055484248 @default.
- W4293042013 cites W2057980421 @default.
- W4293042013 cites W2060684029 @default.
- W4293042013 cites W2069075788 @default.
- W4293042013 cites W2073241381 @default.
- W4293042013 cites W2073897249 @default.
- W4293042013 cites W2085266415 @default.
- W4293042013 cites W2091054518 @default.
- W4293042013 cites W2091983181 @default.
- W4293042013 cites W2099490136 @default.
- W4293042013 cites W2103607079 @default.
- W4293042013 cites W2109418004 @default.
- W4293042013 cites W2129170107 @default.
- W4293042013 cites W2151958841 @default.
- W4293042013 cites W2158323088 @default.
- W4293042013 cites W2171952443 @default.
- W4293042013 cites W2174601942 @default.
- W4293042013 cites W2265344702 @default.
- W4293042013 cites W2284531492 @default.
- W4293042013 cites W2605625916 @default.
- W4293042013 cites W2611901592 @default.
- W4293042013 cites W2735102987 @default.
- W4293042013 cites W2737614437 @default.
- W4293042013 cites W2748401178 @default.
- W4293042013 cites W2756013113 @default.
- W4293042013 cites W2793697480 @default.
- W4293042013 cites W2798935884 @default.
- W4293042013 cites W2890558261 @default.
- W4293042013 cites W2895927261 @default.
- W4293042013 cites W2898315821 @default.
- W4293042013 cites W2939159789 @default.
- W4293042013 cites W2953988481 @default.
- W4293042013 cites W2963013180 @default.
- W4293042013 cites W2963139910 @default.
- W4293042013 cites W2964004770 @default.
- W4293042013 cites W2964302124 @default.
- W4293042013 cites W2991470870 @default.
- W4293042013 cites W3040804562 @default.
- W4293042013 cites W3043971526 @default.
- W4293042013 cites W3081963163 @default.
- W4293042013 cites W3098283405 @default.
- W4293042013 cites W3098926478 @default.
- W4293042013 cites W3099234608 @default.
- W4293042013 cites W3099423575 @default.
- W4293042013 cites W3099674394 @default.
- W4293042013 cites W3100367016 @default.
- W4293042013 cites W3100504744 @default.
- W4293042013 cites W3100642814 @default.
- W4293042013 cites W3100944745 @default.
- W4293042013 cites W3101728847 @default.
- W4293042013 cites W3101979980 @default.
- W4293042013 cites W3102171281 @default.
- W4293042013 cites W3103293640 @default.
- W4293042013 cites W3103897655 @default.
- W4293042013 cites W3104093490 @default.
- W4293042013 cites W3105332526 @default.
- W4293042013 cites W3105710021 @default.
- W4293042013 cites W3106327537 @default.
- W4293042013 cites W3121991494 @default.
- W4293042013 cites W3135650801 @default.
- W4293042013 cites W3145395689 @default.
- W4293042013 cites W3159056511 @default.
- W4293042013 cites W3170384143 @default.
- W4293042013 cites W3198658081 @default.
- W4293042013 cites W4295138553 @default.
- W4293042013 doi "https://doi.org/10.1088/1742-5468/ac7aa7" @default.
- W4293042013 hasPublicationYear "2022" @default.
- W4293042013 type Work @default.
- W4293042013 citedByCount "4" @default.