Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293051418> ?p ?o ?g. }
- W4293051418 endingPage "1008" @default.
- W4293051418 startingPage "998" @default.
- W4293051418 abstract "Physics-based models typically require an in-depth understanding of a phenomenon and assumptions of the underlying process(es), which are often hard to obtain in practice, whereas data-driven machine learning models learn the structure and patterns in the training data without any prior theoretical assumptions and then use inference to develop useful predictions. A novel machine learning-based algorithm has been previously developed for the prediction of black carbon mass absorption cross-section (MACBC) and applied to a variety of different atmospheric environments. In contrast to light scattering theories which require assumptions about the underlying physics, this algorithm uses time-series data of aerosol properties to estimate the temporally varying MACBC at 870 nm. Here, we analyze our algorithm and discuss the influence of aerosol optical properties (such as Ångström exponents and single scattering albedo) and chemical composition on the model outputs and the associated accuracy. Additionally, we conduct sensitivity analyses on our models to understand how the predictions change in response to different sets of input variables. Our support vector machine (SVM) for regression model is the least sensitive to variations in the input variables, although all models tend to exhibit a degradation to their accuracy when scattering Ångström exponents are less than one." @default.
- W4293051418 created "2022-08-25" @default.
- W4293051418 creator A5018649578 @default.
- W4293051418 creator A5059430517 @default.
- W4293051418 date "2022-09-06" @default.
- W4293051418 modified "2023-10-14" @default.
- W4293051418 title "Application of machine learning approaches in the analysis of mass absorption cross-section of black carbon aerosols: Aerosol composition dependencies and sensitivity analyses" @default.
- W4293051418 cites W1566994382 @default.
- W4293051418 cites W1907369419 @default.
- W4293051418 cites W1979660112 @default.
- W4293051418 cites W1988880047 @default.
- W4293051418 cites W2001410064 @default.
- W4293051418 cites W2009785411 @default.
- W4293051418 cites W2023498958 @default.
- W4293051418 cites W2028999185 @default.
- W4293051418 cites W2029962501 @default.
- W4293051418 cites W2037490486 @default.
- W4293051418 cites W2061638594 @default.
- W4293051418 cites W2067452215 @default.
- W4293051418 cites W2069461209 @default.
- W4293051418 cites W2072277289 @default.
- W4293051418 cites W2084693817 @default.
- W4293051418 cites W2087271056 @default.
- W4293051418 cites W2096913632 @default.
- W4293051418 cites W2097414390 @default.
- W4293051418 cites W2099852381 @default.
- W4293051418 cites W2119793656 @default.
- W4293051418 cites W2132002340 @default.
- W4293051418 cites W2143333209 @default.
- W4293051418 cites W2144077151 @default.
- W4293051418 cites W2162214076 @default.
- W4293051418 cites W2329928930 @default.
- W4293051418 cites W2464129681 @default.
- W4293051418 cites W2522163740 @default.
- W4293051418 cites W2756427740 @default.
- W4293051418 cites W2782871819 @default.
- W4293051418 cites W2801505543 @default.
- W4293051418 cites W2802918503 @default.
- W4293051418 cites W2811300257 @default.
- W4293051418 cites W2888537274 @default.
- W4293051418 cites W2921932289 @default.
- W4293051418 cites W2945749405 @default.
- W4293051418 cites W2964378914 @default.
- W4293051418 cites W2981204965 @default.
- W4293051418 cites W2997698625 @default.
- W4293051418 cites W3003160997 @default.
- W4293051418 cites W3023647909 @default.
- W4293051418 cites W3030410365 @default.
- W4293051418 cites W3033530208 @default.
- W4293051418 cites W3034249623 @default.
- W4293051418 cites W3092078579 @default.
- W4293051418 cites W3093280446 @default.
- W4293051418 cites W3097672936 @default.
- W4293051418 cites W3100612584 @default.
- W4293051418 cites W3110956710 @default.
- W4293051418 cites W3114356689 @default.
- W4293051418 cites W3130096565 @default.
- W4293051418 cites W3142512498 @default.
- W4293051418 cites W3166004755 @default.
- W4293051418 cites W3185589235 @default.
- W4293051418 cites W3193757807 @default.
- W4293051418 cites W4220906272 @default.
- W4293051418 cites W423394828 @default.
- W4293051418 cites W4252814495 @default.
- W4293051418 cites W4292756692 @default.
- W4293051418 doi "https://doi.org/10.1080/02786826.2022.2114312" @default.
- W4293051418 hasPublicationYear "2022" @default.
- W4293051418 type Work @default.
- W4293051418 citedByCount "2" @default.
- W4293051418 countsByYear W42930514182022 @default.
- W4293051418 countsByYear W42930514182023 @default.
- W4293051418 crossrefType "journal-article" @default.
- W4293051418 hasAuthorship W4293051418A5018649578 @default.
- W4293051418 hasAuthorship W4293051418A5059430517 @default.
- W4293051418 hasBestOaLocation W42930514181 @default.
- W4293051418 hasConcept C11413529 @default.
- W4293051418 hasConcept C119857082 @default.
- W4293051418 hasConcept C120456961 @default.
- W4293051418 hasConcept C120665830 @default.
- W4293051418 hasConcept C121332964 @default.
- W4293051418 hasConcept C121864883 @default.
- W4293051418 hasConcept C125287762 @default.
- W4293051418 hasConcept C127413603 @default.
- W4293051418 hasConcept C142362112 @default.
- W4293051418 hasConcept C153294291 @default.
- W4293051418 hasConcept C154945302 @default.
- W4293051418 hasConcept C191486275 @default.
- W4293051418 hasConcept C195886398 @default.
- W4293051418 hasConcept C21200559 @default.
- W4293051418 hasConcept C24326235 @default.
- W4293051418 hasConcept C2778552899 @default.
- W4293051418 hasConcept C2779345167 @default.
- W4293051418 hasConcept C41008148 @default.
- W4293051418 hasConcept C52119013 @default.
- W4293051418 hasConcept C554144382 @default.
- W4293051418 hasConceptScore W4293051418C11413529 @default.
- W4293051418 hasConceptScore W4293051418C119857082 @default.
- W4293051418 hasConceptScore W4293051418C120456961 @default.