Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293054278> ?p ?o ?g. }
- W4293054278 endingPage "T328" @default.
- W4293054278 startingPage "T315" @default.
- W4293054278 abstract "An attractive feature of finite-difference modeling in the frequency domain is the low recomputation cost to simulate seismic waves for many sources through the same velocity model. However, it is time consuming if many frequencies are involved for solving the linear wave equations, particularly, for large 3D velocity models. We propose accelerating the modeling by applying deep learning. Because similarity appears among the wavefields in near frequencies, we can extract similar features and reconstruct the unknown wavefields by deep learning. We compute fewer frequency-domain wavefields with a large frequency interval by conventional modeling methods, such as finite-difference methods, and then interpolate more frequency-domain wavefields with a small frequency interval by applying deep learning. Numerical examples demonstrate that the U-Net, which is trained by the data on 10 2D simple-layered models, can be used to interpolate the data on SEG Advanced Modeling models and also can be used to interpolate the data on the 3D layered model and 3D overthrust model. A series of tests on perturbation models prove that the U-Net performance is still good when the root-mean-square value of the velocity model perturbation relative to the initial model is up to 15%. Compared with traditional modeling methods, the computational time of interpolating by applying deep learning is negligible, especially for 3D models. After the network is trained, the acceleration strategy helps to reduce the runtime by approximately 50% for a modeling problem because the U-Net can be used to interpolate 50% of the data that would otherwise need to be modeled. Although training the model will take some time, good generalization of the U-Net, especially for 3D problems, enhances its benefits on the application for frequency-domain forward modeling." @default.
- W4293054278 created "2022-08-25" @default.
- W4293054278 creator A5000814233 @default.
- W4293054278 creator A5002342107 @default.
- W4293054278 creator A5039308346 @default.
- W4293054278 creator A5090465804 @default.
- W4293054278 date "2022-06-21" @default.
- W4293054278 modified "2023-10-11" @default.
- W4293054278 title "Accelerating 2D and 3D frequency-domain seismic wave modeling through interpolating frequency-domain wavefields by deep learning" @default.
- W4293054278 cites W1856306571 @default.
- W4293054278 cites W1901129140 @default.
- W4293054278 cites W1985883290 @default.
- W4293054278 cites W1990871225 @default.
- W4293054278 cites W2060690636 @default.
- W4293054278 cites W2094733108 @default.
- W4293054278 cites W2101615520 @default.
- W4293054278 cites W2106787546 @default.
- W4293054278 cites W2117997045 @default.
- W4293054278 cites W2130215339 @default.
- W4293054278 cites W2138940359 @default.
- W4293054278 cites W2143296655 @default.
- W4293054278 cites W2154046324 @default.
- W4293054278 cites W2166260557 @default.
- W4293054278 cites W2315448837 @default.
- W4293054278 cites W2444391089 @default.
- W4293054278 cites W2593477011 @default.
- W4293054278 cites W2758816065 @default.
- W4293054278 cites W2806821102 @default.
- W4293054278 cites W2807914764 @default.
- W4293054278 cites W2888988682 @default.
- W4293054278 cites W2891354999 @default.
- W4293054278 cites W2891749414 @default.
- W4293054278 cites W2894410771 @default.
- W4293054278 cites W2912052494 @default.
- W4293054278 cites W2919115771 @default.
- W4293054278 cites W2953182346 @default.
- W4293054278 cites W2963787510 @default.
- W4293054278 cites W2964121744 @default.
- W4293054278 cites W2966618135 @default.
- W4293054278 cites W2970228285 @default.
- W4293054278 cites W2970419158 @default.
- W4293054278 cites W2979419929 @default.
- W4293054278 cites W2982350982 @default.
- W4293054278 cites W2983807332 @default.
- W4293054278 cites W2988434973 @default.
- W4293054278 cites W2991580101 @default.
- W4293054278 cites W3007658705 @default.
- W4293054278 cites W3033655015 @default.
- W4293054278 cites W3034667926 @default.
- W4293054278 cites W3113715007 @default.
- W4293054278 cites W3125476449 @default.
- W4293054278 cites W3196492281 @default.
- W4293054278 cites W4289752165 @default.
- W4293054278 cites W4376595727 @default.
- W4293054278 cites W567646997 @default.
- W4293054278 doi "https://doi.org/10.1190/geo2021-0435.1" @default.
- W4293054278 hasPublicationYear "2022" @default.
- W4293054278 type Work @default.
- W4293054278 citedByCount "1" @default.
- W4293054278 countsByYear W42930542782023 @default.
- W4293054278 crossrefType "journal-article" @default.
- W4293054278 hasAuthorship W4293054278A5000814233 @default.
- W4293054278 hasAuthorship W4293054278A5002342107 @default.
- W4293054278 hasAuthorship W4293054278A5039308346 @default.
- W4293054278 hasAuthorship W4293054278A5090465804 @default.
- W4293054278 hasConcept C103278499 @default.
- W4293054278 hasConcept C103824480 @default.
- W4293054278 hasConcept C108583219 @default.
- W4293054278 hasConcept C11413529 @default.
- W4293054278 hasConcept C115961682 @default.
- W4293054278 hasConcept C121332964 @default.
- W4293054278 hasConcept C127313418 @default.
- W4293054278 hasConcept C134306372 @default.
- W4293054278 hasConcept C137800194 @default.
- W4293054278 hasConcept C154945302 @default.
- W4293054278 hasConcept C177918212 @default.
- W4293054278 hasConcept C181330731 @default.
- W4293054278 hasConcept C19118579 @default.
- W4293054278 hasConcept C31972630 @default.
- W4293054278 hasConcept C33923547 @default.
- W4293054278 hasConcept C41008148 @default.
- W4293054278 hasConcept C62520636 @default.
- W4293054278 hasConcept C78542244 @default.
- W4293054278 hasConcept C8058405 @default.
- W4293054278 hasConceptScore W4293054278C103278499 @default.
- W4293054278 hasConceptScore W4293054278C103824480 @default.
- W4293054278 hasConceptScore W4293054278C108583219 @default.
- W4293054278 hasConceptScore W4293054278C11413529 @default.
- W4293054278 hasConceptScore W4293054278C115961682 @default.
- W4293054278 hasConceptScore W4293054278C121332964 @default.
- W4293054278 hasConceptScore W4293054278C127313418 @default.
- W4293054278 hasConceptScore W4293054278C134306372 @default.
- W4293054278 hasConceptScore W4293054278C137800194 @default.
- W4293054278 hasConceptScore W4293054278C154945302 @default.
- W4293054278 hasConceptScore W4293054278C177918212 @default.
- W4293054278 hasConceptScore W4293054278C181330731 @default.
- W4293054278 hasConceptScore W4293054278C19118579 @default.
- W4293054278 hasConceptScore W4293054278C31972630 @default.