Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293060711> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W4293060711 abstract "Finite frames, or spanning sets for finite-dimensional Hilbert spaces, are a ubiquitous tool in signal processing. There has been much recent work on understanding the global structure of collections of finite frames with prescribed properties, such as spaces of unit norm tight frames. We extend some of these results to the more general setting of fusion frames -- a fusion frame is a collection of subspaces of a finite-dimensional Hilbert space with the property that any vector can be recovered from its list of projections. The notion of tightness extends to fusion frames, and we consider the following basic question: is the collection of tight fusion frames with prescribed subspace dimensions path connected? We answer (a generalization of) this question in the affirmative, extending the analogous result for unit norm tight frames proved by Cahill, Mixon and Strawn. We also extend a result of Benedetto and Fickus, who defined a natural functional on the space of unit norm frames (the frame potential), showed that its global minimizers are tight, and showed that it has no spurious local minimizers, meaning that gradient descent can be used to construct unit-norm tight frames. We prove the analogous result for the fusion frame potential of Casazza and Fickus, implying that, when tight fusion frames exist for a given choice of dimensions, they can be constructed via gradient descent. Our proofs use techniques from symplectic geometry and Mumford's geometric invariant theory." @default.
- W4293060711 created "2022-08-25" @default.
- W4293060711 creator A5042389629 @default.
- W4293060711 creator A5073878869 @default.
- W4293060711 date "2022-08-23" @default.
- W4293060711 modified "2023-09-30" @default.
- W4293060711 title "Fusion Frame Homotopy and Tightening Fusion Frames by Gradient Descent" @default.
- W4293060711 doi "https://doi.org/10.1007/s00041-023-10028-0" @default.
- W4293060711 hasPublicationYear "2022" @default.
- W4293060711 type Work @default.
- W4293060711 citedByCount "0" @default.
- W4293060711 crossrefType "posted-content" @default.
- W4293060711 hasAuthorship W4293060711A5042389629 @default.
- W4293060711 hasAuthorship W4293060711A5073878869 @default.
- W4293060711 hasBestOaLocation W42930607111 @default.
- W4293060711 hasConcept C12362212 @default.
- W4293060711 hasConcept C134306372 @default.
- W4293060711 hasConcept C17744445 @default.
- W4293060711 hasConcept C191795146 @default.
- W4293060711 hasConcept C199539241 @default.
- W4293060711 hasConcept C202444582 @default.
- W4293060711 hasConcept C32834561 @default.
- W4293060711 hasConcept C33923547 @default.
- W4293060711 hasConceptScore W4293060711C12362212 @default.
- W4293060711 hasConceptScore W4293060711C134306372 @default.
- W4293060711 hasConceptScore W4293060711C17744445 @default.
- W4293060711 hasConceptScore W4293060711C191795146 @default.
- W4293060711 hasConceptScore W4293060711C199539241 @default.
- W4293060711 hasConceptScore W4293060711C202444582 @default.
- W4293060711 hasConceptScore W4293060711C32834561 @default.
- W4293060711 hasConceptScore W4293060711C33923547 @default.
- W4293060711 hasLocation W42930607111 @default.
- W4293060711 hasOpenAccess W4293060711 @default.
- W4293060711 hasPrimaryLocation W42930607111 @default.
- W4293060711 hasRelatedWork W1532544976 @default.
- W4293060711 hasRelatedWork W1962202731 @default.
- W4293060711 hasRelatedWork W1967790613 @default.
- W4293060711 hasRelatedWork W1970763115 @default.
- W4293060711 hasRelatedWork W2160555573 @default.
- W4293060711 hasRelatedWork W3202434537 @default.
- W4293060711 hasRelatedWork W3216245978 @default.
- W4293060711 hasRelatedWork W4286953178 @default.
- W4293060711 hasRelatedWork W4293863696 @default.
- W4293060711 hasRelatedWork W4308739957 @default.
- W4293060711 isParatext "false" @default.
- W4293060711 isRetracted "false" @default.
- W4293060711 workType "article" @default.