Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293062810> ?p ?o ?g. }
- W4293062810 endingPage "433" @default.
- W4293062810 startingPage "409" @default.
- W4293062810 abstract "Abstract The ocean is an important ecosystem, and aquatic animals play an important role in the biological world, especially in aquaculture. How to accurately and intelligently recognise and detect aquatic animals is one of the urgent problems in the field of underwater biological detection. The wide applications of artificial intelligence (AI), especially deep learning (DL), provide new opportunities and challenges for the efficient and intelligent exploration of aquatic animals. DL has been widely used in the visual recognition and detection of terrestrial animals, but it is in the early stages of use for aquatic animals due to the complexity of underwater environment and the difficulty of data acquisition. Here, this article reviews the current application status of DL for aquatic animals, potential challenges and future directions. The key advances of DL algorithms applied to the visual recognition and detection of aquatic animals are generalised, including datasets, algorithms and performance. The applications of DL are summarised in aquatic animals, including image detection, video detection, species classification, biomass estimation, behaviour analysis and food safety. Furthermore, the challenges are summed up and classified in the object recognition and detection domain for aquatic animals. Finally, further research direction is discussed and the conclusions are drawn. The key advances of DL in the recognition and detection of aquatic animals will help to further excavate and extend the application of DL in the field of marine biological exploration." @default.
- W4293062810 created "2022-08-26" @default.
- W4293062810 creator A5003198124 @default.
- W4293062810 creator A5023339369 @default.
- W4293062810 creator A5045812199 @default.
- W4293062810 creator A5049456032 @default.
- W4293062810 creator A5056315409 @default.
- W4293062810 creator A5064711465 @default.
- W4293062810 date "2022-08-16" @default.
- W4293062810 modified "2023-10-16" @default.
- W4293062810 title "Deep learning for visual recognition and detection of aquatic animals: A review" @default.
- W4293062810 cites W1983441032 @default.
- W4293062810 cites W2005912592 @default.
- W4293062810 cites W2032542685 @default.
- W4293062810 cites W2051785999 @default.
- W4293062810 cites W2058860584 @default.
- W4293062810 cites W2076063813 @default.
- W4293062810 cites W2097117768 @default.
- W4293062810 cites W2100495367 @default.
- W4293062810 cites W2112796928 @default.
- W4293062810 cites W2140309276 @default.
- W4293062810 cites W2165698076 @default.
- W4293062810 cites W2186155590 @default.
- W4293062810 cites W2194775991 @default.
- W4293062810 cites W2423811253 @default.
- W4293062810 cites W2509472879 @default.
- W4293062810 cites W2522256182 @default.
- W4293062810 cites W2565516711 @default.
- W4293062810 cites W2587935902 @default.
- W4293062810 cites W2588481349 @default.
- W4293062810 cites W2597016891 @default.
- W4293062810 cites W2618530766 @default.
- W4293062810 cites W2736690020 @default.
- W4293062810 cites W2745261606 @default.
- W4293062810 cites W2757312963 @default.
- W4293062810 cites W2759911238 @default.
- W4293062810 cites W2767106145 @default.
- W4293062810 cites W2777374116 @default.
- W4293062810 cites W2790979755 @default.
- W4293062810 cites W2791492845 @default.
- W4293062810 cites W2795250396 @default.
- W4293062810 cites W2799332695 @default.
- W4293062810 cites W2810270273 @default.
- W4293062810 cites W2859720860 @default.
- W4293062810 cites W2884421382 @default.
- W4293062810 cites W2886263632 @default.
- W4293062810 cites W2889994223 @default.
- W4293062810 cites W2891182582 @default.
- W4293062810 cites W2896774879 @default.
- W4293062810 cites W2897654901 @default.
- W4293062810 cites W2901868098 @default.
- W4293062810 cites W2904637289 @default.
- W4293062810 cites W2905729292 @default.
- W4293062810 cites W2913295373 @default.
- W4293062810 cites W2914663144 @default.
- W4293062810 cites W2916994621 @default.
- W4293062810 cites W2919115771 @default.
- W4293062810 cites W2920741983 @default.
- W4293062810 cites W2941123315 @default.
- W4293062810 cites W2944299331 @default.
- W4293062810 cites W2946019744 @default.
- W4293062810 cites W2946622274 @default.
- W4293062810 cites W2948792840 @default.
- W4293062810 cites W2954959100 @default.
- W4293062810 cites W2963037989 @default.
- W4293062810 cites W2963150697 @default.
- W4293062810 cites W2963446712 @default.
- W4293062810 cites W2963830453 @default.
- W4293062810 cites W2964583519 @default.
- W4293062810 cites W2966808454 @default.
- W4293062810 cites W2969522893 @default.
- W4293062810 cites W2973445298 @default.
- W4293062810 cites W2976186782 @default.
- W4293062810 cites W2977808367 @default.
- W4293062810 cites W2977912641 @default.
- W4293062810 cites W2978688014 @default.
- W4293062810 cites W2981482662 @default.
- W4293062810 cites W2982993655 @default.
- W4293062810 cites W2984556841 @default.
- W4293062810 cites W2985896483 @default.
- W4293062810 cites W2986670051 @default.
- W4293062810 cites W2989651927 @default.
- W4293062810 cites W2990618871 @default.
- W4293062810 cites W2991367577 @default.
- W4293062810 cites W2997356057 @default.
- W4293062810 cites W2998543752 @default.
- W4293062810 cites W3000770417 @default.
- W4293062810 cites W3001975036 @default.
- W4293062810 cites W3003025382 @default.
- W4293062810 cites W3005471055 @default.
- W4293062810 cites W3006700002 @default.
- W4293062810 cites W3008202940 @default.
- W4293062810 cites W3008321715 @default.
- W4293062810 cites W3008350376 @default.
- W4293062810 cites W3011408087 @default.
- W4293062810 cites W3012651379 @default.
- W4293062810 cites W3014286955 @default.
- W4293062810 cites W3016465642 @default.