Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293063672> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4293063672 abstract "An essential aspect of resilience within Cyber-Physical Systems stands in their capacity of early detection of faults before they generate failures. Faults can be of any origin, either natural or intentional. Detection of faults enables predictive maintenance, where faults are managed through diagnosis and prognosis. In this paper we focus on intelligent predictive maintenance based on a class of machine learning techniques, namely transfer learning, which overcomes some limitations of traditional approaches in terms of availability of appropriate training datasets and discrepancy of data distribution. We provide a conceptual approach and a reference architecture supporting transfer learning within intelligent predictive maintenance applications for cyber-physical systems. The approach is based on the emerging paradigms of Industry 4.0, the industrial Internet of Things, and Digital Twins hosting run-time models for providing the training data set for the target domain. Although we mainly focus on health monitoring and prognostics of industrial machinery as a reference application, the general approach is suitable to both physical- and cyber-threat detection, and to any combination of them within the same system, or even in complex systems-of-systems such as critical infrastructures. We show how transfer learning can aid predictive maintenance with intelligent fault detection, diagnosis and prognosis, and describe some the challenges that need to be addressed for its effective adoption in real industrial applications." @default.
- W4293063672 created "2022-08-26" @default.
- W4293063672 creator A5005938503 @default.
- W4293063672 creator A5037708866 @default.
- W4293063672 creator A5072166793 @default.
- W4293063672 date "2022-07-27" @default.
- W4293063672 modified "2023-10-14" @default.
- W4293063672 title "Improving Resilience in Cyber-Physical Systems based on Transfer Learning" @default.
- W4293063672 cites W2012651791 @default.
- W4293063672 cites W2395579298 @default.
- W4293063672 cites W2606213502 @default.
- W4293063672 cites W2897317743 @default.
- W4293063672 cites W2913031385 @default.
- W4293063672 cites W2914942700 @default.
- W4293063672 cites W2972137370 @default.
- W4293063672 cites W2974733188 @default.
- W4293063672 cites W2982100952 @default.
- W4293063672 cites W3006518571 @default.
- W4293063672 cites W3015218709 @default.
- W4293063672 cites W3024946300 @default.
- W4293063672 cites W3083531094 @default.
- W4293063672 cites W3092012490 @default.
- W4293063672 cites W3112055870 @default.
- W4293063672 cites W3120487494 @default.
- W4293063672 cites W3128906627 @default.
- W4293063672 cites W3135939397 @default.
- W4293063672 cites W3160541836 @default.
- W4293063672 cites W3180236906 @default.
- W4293063672 cites W3194976308 @default.
- W4293063672 cites W4280599547 @default.
- W4293063672 doi "https://doi.org/10.1109/csr54599.2022.9850282" @default.
- W4293063672 hasPublicationYear "2022" @default.
- W4293063672 type Work @default.
- W4293063672 citedByCount "4" @default.
- W4293063672 countsByYear W42930636722023 @default.
- W4293063672 crossrefType "proceedings-article" @default.
- W4293063672 hasAuthorship W4293063672A5005938503 @default.
- W4293063672 hasAuthorship W4293063672A5037708866 @default.
- W4293063672 hasAuthorship W4293063672A5072166793 @default.
- W4293063672 hasConcept C111919701 @default.
- W4293063672 hasConcept C119599485 @default.
- W4293063672 hasConcept C119857082 @default.
- W4293063672 hasConcept C121332964 @default.
- W4293063672 hasConcept C124101348 @default.
- W4293063672 hasConcept C127413603 @default.
- W4293063672 hasConcept C129364497 @default.
- W4293063672 hasConcept C150899416 @default.
- W4293063672 hasConcept C152745839 @default.
- W4293063672 hasConcept C154945302 @default.
- W4293063672 hasConcept C172707124 @default.
- W4293063672 hasConcept C177264268 @default.
- W4293063672 hasConcept C179768478 @default.
- W4293063672 hasConcept C199360897 @default.
- W4293063672 hasConcept C200601418 @default.
- W4293063672 hasConcept C2775846686 @default.
- W4293063672 hasConcept C2777986313 @default.
- W4293063672 hasConcept C2779585090 @default.
- W4293063672 hasConcept C41008148 @default.
- W4293063672 hasConcept C70452415 @default.
- W4293063672 hasConcept C97355855 @default.
- W4293063672 hasConceptScore W4293063672C111919701 @default.
- W4293063672 hasConceptScore W4293063672C119599485 @default.
- W4293063672 hasConceptScore W4293063672C119857082 @default.
- W4293063672 hasConceptScore W4293063672C121332964 @default.
- W4293063672 hasConceptScore W4293063672C124101348 @default.
- W4293063672 hasConceptScore W4293063672C127413603 @default.
- W4293063672 hasConceptScore W4293063672C129364497 @default.
- W4293063672 hasConceptScore W4293063672C150899416 @default.
- W4293063672 hasConceptScore W4293063672C152745839 @default.
- W4293063672 hasConceptScore W4293063672C154945302 @default.
- W4293063672 hasConceptScore W4293063672C172707124 @default.
- W4293063672 hasConceptScore W4293063672C177264268 @default.
- W4293063672 hasConceptScore W4293063672C179768478 @default.
- W4293063672 hasConceptScore W4293063672C199360897 @default.
- W4293063672 hasConceptScore W4293063672C200601418 @default.
- W4293063672 hasConceptScore W4293063672C2775846686 @default.
- W4293063672 hasConceptScore W4293063672C2777986313 @default.
- W4293063672 hasConceptScore W4293063672C2779585090 @default.
- W4293063672 hasConceptScore W4293063672C41008148 @default.
- W4293063672 hasConceptScore W4293063672C70452415 @default.
- W4293063672 hasConceptScore W4293063672C97355855 @default.
- W4293063672 hasLocation W42930636721 @default.
- W4293063672 hasOpenAccess W4293063672 @default.
- W4293063672 hasPrimaryLocation W42930636721 @default.
- W4293063672 hasRelatedWork W2808612991 @default.
- W4293063672 hasRelatedWork W2908973203 @default.
- W4293063672 hasRelatedWork W2960456850 @default.
- W4293063672 hasRelatedWork W3127692495 @default.
- W4293063672 hasRelatedWork W4280547304 @default.
- W4293063672 hasRelatedWork W4293063672 @default.
- W4293063672 hasRelatedWork W4308262314 @default.
- W4293063672 hasRelatedWork W4319603077 @default.
- W4293063672 hasRelatedWork W4382286161 @default.
- W4293063672 hasRelatedWork W4386213806 @default.
- W4293063672 isParatext "false" @default.
- W4293063672 isRetracted "false" @default.
- W4293063672 workType "article" @default.