Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293072428> ?p ?o ?g. }
- W4293072428 endingPage "23323" @default.
- W4293072428 startingPage "23316" @default.
- W4293072428 abstract "In order to effectively predict fire risk of hydrogen pipeline leakage and improve the safe level of hydrogen pipeline, the finite Ridgelet neural network optimized by improved firefly algorithm is constructed. Related researches on pipeline leakage fire risk and corresponding prediction models are summarized. The finite Ridgelet neural network is constructed by using finite Ridgelet function as excitation function of node in hidden layer, and the structure of finite Ridgelet neural network is established. The improved firefly algorithm based on location update mechanism is designed to optimize the parameters of finite Ridgelet neural network. And then the fire risk level prediction procedure of hydrogen pipeline is designed. Finally, forty training samples and ten testing samples are selected to carry out fire risk level prediction analysis, results show that the proposed finite Ridgelet neural network optimized by improved firefly algorithm has advantages in prediction precision and accuracy, which can effectively predict the safety status of hydrogen pipeline." @default.
- W4293072428 created "2022-08-26" @default.
- W4293072428 creator A5009582245 @default.
- W4293072428 creator A5013340216 @default.
- W4293072428 creator A5026192919 @default.
- W4293072428 creator A5035752387 @default.
- W4293072428 creator A5071974448 @default.
- W4293072428 date "2022-06-01" @default.
- W4293072428 modified "2023-10-16" @default.
- W4293072428 title "Research on intelligent prediction of hydrogen pipeline leakage fire based on Finite Ridgelet neural network" @default.
- W4293072428 cites W2072201083 @default.
- W4293072428 cites W2794393856 @default.
- W4293072428 cites W2962762255 @default.
- W4293072428 cites W3015851013 @default.
- W4293072428 cites W3029194372 @default.
- W4293072428 cites W3039060092 @default.
- W4293072428 cites W3046639775 @default.
- W4293072428 cites W3046840004 @default.
- W4293072428 cites W3087207016 @default.
- W4293072428 cites W3097542115 @default.
- W4293072428 cites W3114741183 @default.
- W4293072428 cites W3119241231 @default.
- W4293072428 cites W3120755945 @default.
- W4293072428 cites W3127482459 @default.
- W4293072428 cites W3133958949 @default.
- W4293072428 cites W3137441277 @default.
- W4293072428 cites W3144689539 @default.
- W4293072428 cites W3161670672 @default.
- W4293072428 cites W3187867088 @default.
- W4293072428 cites W3197563535 @default.
- W4293072428 cites W3198128710 @default.
- W4293072428 cites W3200570235 @default.
- W4293072428 cites W3203591811 @default.
- W4293072428 cites W3206859690 @default.
- W4293072428 cites W3208557128 @default.
- W4293072428 cites W3211255756 @default.
- W4293072428 cites W3211723343 @default.
- W4293072428 cites W3215060105 @default.
- W4293072428 cites W4200525215 @default.
- W4293072428 cites W4210259262 @default.
- W4293072428 cites W4210499386 @default.
- W4293072428 cites W4210503671 @default.
- W4293072428 cites W4214705633 @default.
- W4293072428 cites W4220933561 @default.
- W4293072428 cites W4220938011 @default.
- W4293072428 cites W4220996389 @default.
- W4293072428 cites W4221086526 @default.
- W4293072428 cites W4224300328 @default.
- W4293072428 doi "https://doi.org/10.1016/j.ijhydene.2022.05.124" @default.
- W4293072428 hasPublicationYear "2022" @default.
- W4293072428 type Work @default.
- W4293072428 citedByCount "4" @default.
- W4293072428 countsByYear W42930724282022 @default.
- W4293072428 countsByYear W42930724282023 @default.
- W4293072428 crossrefType "journal-article" @default.
- W4293072428 hasAuthorship W4293072428A5009582245 @default.
- W4293072428 hasAuthorship W4293072428A5013340216 @default.
- W4293072428 hasAuthorship W4293072428A5026192919 @default.
- W4293072428 hasAuthorship W4293072428A5035752387 @default.
- W4293072428 hasAuthorship W4293072428A5071974448 @default.
- W4293072428 hasConcept C11413529 @default.
- W4293072428 hasConcept C127413603 @default.
- W4293072428 hasConcept C139719470 @default.
- W4293072428 hasConcept C154945302 @default.
- W4293072428 hasConcept C154982244 @default.
- W4293072428 hasConcept C162324750 @default.
- W4293072428 hasConcept C199360897 @default.
- W4293072428 hasConcept C2777042071 @default.
- W4293072428 hasConcept C41008148 @default.
- W4293072428 hasConcept C43521106 @default.
- W4293072428 hasConcept C50644808 @default.
- W4293072428 hasConcept C62611344 @default.
- W4293072428 hasConcept C66938386 @default.
- W4293072428 hasConcept C85617194 @default.
- W4293072428 hasConceptScore W4293072428C11413529 @default.
- W4293072428 hasConceptScore W4293072428C127413603 @default.
- W4293072428 hasConceptScore W4293072428C139719470 @default.
- W4293072428 hasConceptScore W4293072428C154945302 @default.
- W4293072428 hasConceptScore W4293072428C154982244 @default.
- W4293072428 hasConceptScore W4293072428C162324750 @default.
- W4293072428 hasConceptScore W4293072428C199360897 @default.
- W4293072428 hasConceptScore W4293072428C2777042071 @default.
- W4293072428 hasConceptScore W4293072428C41008148 @default.
- W4293072428 hasConceptScore W4293072428C43521106 @default.
- W4293072428 hasConceptScore W4293072428C50644808 @default.
- W4293072428 hasConceptScore W4293072428C62611344 @default.
- W4293072428 hasConceptScore W4293072428C66938386 @default.
- W4293072428 hasConceptScore W4293072428C85617194 @default.
- W4293072428 hasIssue "55" @default.
- W4293072428 hasLocation W42930724281 @default.
- W4293072428 hasOpenAccess W4293072428 @default.
- W4293072428 hasPrimaryLocation W42930724281 @default.
- W4293072428 hasRelatedWork W2026753401 @default.
- W4293072428 hasRelatedWork W2360883279 @default.
- W4293072428 hasRelatedWork W2386387936 @default.
- W4293072428 hasRelatedWork W2757017967 @default.
- W4293072428 hasRelatedWork W2795841831 @default.
- W4293072428 hasRelatedWork W2900582170 @default.