Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293075330> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4293075330 endingPage "5" @default.
- W4293075330 startingPage "1" @default.
- W4293075330 abstract "A GEOsynchronous Spaceborne-Airborne Bistatic Synthetic Aperture Radar (GEO SA-BSAR) system has been proved to be a significant tool for moving targets monitoring. Due to the special geometry model of the GEO SA-BSAR system, there is a complex relative movement between the moving target and the bistatic radar, leading to an additional phase modulation of the echo and further, causing moving targets to be smeared in the SAR image. Recently, Deep Neural Network (DNN) shows great potential in rapid image recovery. However, most image recovery methods based on DNN concentrate on the whole image, which limits the imaging performance of sparse targets. In this letter, we propose a DNN framework with similarity constraints for GEO SA-BSAR moving target imaging. This DNN-based method optimizes the cosine similarity of azimuth signals between the ground-truth image and the predicted image in the loss function to recover the azimuth position and focusing characteristics of the sparse targets. Extensive experimental results prove that the proposed model can quickly obtain GEO SA-BSAR moving target images with small training datasets compared with some counterparts." @default.
- W4293075330 created "2022-08-26" @default.
- W4293075330 creator A5015808361 @default.
- W4293075330 creator A5031445156 @default.
- W4293075330 creator A5049651485 @default.
- W4293075330 creator A5059328744 @default.
- W4293075330 creator A5089718534 @default.
- W4293075330 date "2022-01-01" @default.
- W4293075330 modified "2023-10-17" @default.
- W4293075330 title "DNN With Similarity Constraint for GEO SA-BSAR Moving Target Imaging" @default.
- W4293075330 cites W1776718039 @default.
- W4293075330 cites W1895555882 @default.
- W4293075330 cites W1968245988 @default.
- W4293075330 cites W2073749597 @default.
- W4293075330 cites W2075894942 @default.
- W4293075330 cites W2501646324 @default.
- W4293075330 cites W3033918167 @default.
- W4293075330 cites W3059510788 @default.
- W4293075330 cites W4210388977 @default.
- W4293075330 doi "https://doi.org/10.1109/lgrs.2022.3196674" @default.
- W4293075330 hasPublicationYear "2022" @default.
- W4293075330 type Work @default.
- W4293075330 citedByCount "1" @default.
- W4293075330 countsByYear W42930753302023 @default.
- W4293075330 crossrefType "journal-article" @default.
- W4293075330 hasAuthorship W4293075330A5015808361 @default.
- W4293075330 hasAuthorship W4293075330A5031445156 @default.
- W4293075330 hasAuthorship W4293075330A5049651485 @default.
- W4293075330 hasAuthorship W4293075330A5059328744 @default.
- W4293075330 hasAuthorship W4293075330A5089718534 @default.
- W4293075330 hasConcept C103278499 @default.
- W4293075330 hasConcept C109094680 @default.
- W4293075330 hasConcept C10929652 @default.
- W4293075330 hasConcept C115961682 @default.
- W4293075330 hasConcept C120665830 @default.
- W4293075330 hasConcept C121332964 @default.
- W4293075330 hasConcept C125045340 @default.
- W4293075330 hasConcept C127313418 @default.
- W4293075330 hasConcept C1276947 @default.
- W4293075330 hasConcept C153180895 @default.
- W4293075330 hasConcept C154945302 @default.
- W4293075330 hasConcept C159737794 @default.
- W4293075330 hasConcept C19269812 @default.
- W4293075330 hasConcept C2780762811 @default.
- W4293075330 hasConcept C31972630 @default.
- W4293075330 hasConcept C41008148 @default.
- W4293075330 hasConcept C554190296 @default.
- W4293075330 hasConcept C62649853 @default.
- W4293075330 hasConcept C76155785 @default.
- W4293075330 hasConcept C87360688 @default.
- W4293075330 hasConcept C94042562 @default.
- W4293075330 hasConceptScore W4293075330C103278499 @default.
- W4293075330 hasConceptScore W4293075330C109094680 @default.
- W4293075330 hasConceptScore W4293075330C10929652 @default.
- W4293075330 hasConceptScore W4293075330C115961682 @default.
- W4293075330 hasConceptScore W4293075330C120665830 @default.
- W4293075330 hasConceptScore W4293075330C121332964 @default.
- W4293075330 hasConceptScore W4293075330C125045340 @default.
- W4293075330 hasConceptScore W4293075330C127313418 @default.
- W4293075330 hasConceptScore W4293075330C1276947 @default.
- W4293075330 hasConceptScore W4293075330C153180895 @default.
- W4293075330 hasConceptScore W4293075330C154945302 @default.
- W4293075330 hasConceptScore W4293075330C159737794 @default.
- W4293075330 hasConceptScore W4293075330C19269812 @default.
- W4293075330 hasConceptScore W4293075330C2780762811 @default.
- W4293075330 hasConceptScore W4293075330C31972630 @default.
- W4293075330 hasConceptScore W4293075330C41008148 @default.
- W4293075330 hasConceptScore W4293075330C554190296 @default.
- W4293075330 hasConceptScore W4293075330C62649853 @default.
- W4293075330 hasConceptScore W4293075330C76155785 @default.
- W4293075330 hasConceptScore W4293075330C87360688 @default.
- W4293075330 hasConceptScore W4293075330C94042562 @default.
- W4293075330 hasFunder F4320321001 @default.
- W4293075330 hasFunder F4320336605 @default.
- W4293075330 hasLocation W42930753301 @default.
- W4293075330 hasOpenAccess W4293075330 @default.
- W4293075330 hasPrimaryLocation W42930753301 @default.
- W4293075330 hasRelatedWork W1925292904 @default.
- W4293075330 hasRelatedWork W1967480947 @default.
- W4293075330 hasRelatedWork W2074347802 @default.
- W4293075330 hasRelatedWork W2086927121 @default.
- W4293075330 hasRelatedWork W2145893282 @default.
- W4293075330 hasRelatedWork W2543460963 @default.
- W4293075330 hasRelatedWork W2794805354 @default.
- W4293075330 hasRelatedWork W2900755281 @default.
- W4293075330 hasRelatedWork W3013160785 @default.
- W4293075330 hasRelatedWork W3080662243 @default.
- W4293075330 hasVolume "19" @default.
- W4293075330 isParatext "false" @default.
- W4293075330 isRetracted "false" @default.
- W4293075330 workType "article" @default.