Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293077538> ?p ?o ?g. }
- W4293077538 endingPage "1458" @default.
- W4293077538 startingPage "1448" @default.
- W4293077538 abstract "Inefficient signal control will not only exaggerate traffic congestion, but also increase the fuel consumption and exhaust emissions. Thus, signal planning is highly important in green transportation. As the Connected vehicle (CV) technology has transformed today’s transportation systems by connecting vehicles and the transportation infrastructure through wireless communication, the CV-based signal control system has seen significant studies recently. Unfortunately, existing signal planning algorithms in use are developed for the signal-intersection, showing low traffic efficiency in the multi-intersection collaborative planning due to ignoring the traffic correlation among the neighboring intersections. In this work, we target the USDOT (U.S. Department of Transportation) sponsored CV-based traffic control system, and implement a multi-intersection traffic network. We model the multi-intersection collaborative signal planning problem as a multi-agent reinforcement learning problem, and present an actor-attention-critic algorithm to improve transportation efficiency and energy efficiency in green transportation, as well as resist congestion attack. Experiment results on the multi-intersection traffic network indicates that 1) compared to the baseline, our approach reduces the total delay by as high as 44.24%; 2) our method transports more vehicles passing the intersections meanwhile reduces the total CO <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> emissions by 2.40%; 3) under the congestion attack, our approach shows robustness and reduces the total delay by as high as 64.33%." @default.
- W4293077538 created "2022-08-26" @default.
- W4293077538 creator A5007332382 @default.
- W4293077538 creator A5042303283 @default.
- W4293077538 creator A5045240151 @default.
- W4293077538 creator A5045997530 @default.
- W4293077538 creator A5047248381 @default.
- W4293077538 creator A5049446052 @default.
- W4293077538 creator A5065487579 @default.
- W4293077538 creator A5074589029 @default.
- W4293077538 creator A5085778638 @default.
- W4293077538 creator A5085845806 @default.
- W4293077538 date "2022-09-01" @default.
- W4293077538 modified "2023-10-18" @default.
- W4293077538 title "Multiagent Reinforcement Learning-Based Signal Planning for Resisting Congestion Attack in Green Transportation" @default.
- W4293077538 cites W1542941925 @default.
- W4293077538 cites W1561324350 @default.
- W4293077538 cites W1972711079 @default.
- W4293077538 cites W2052382276 @default.
- W4293077538 cites W2069707124 @default.
- W4293077538 cites W2132748629 @default.
- W4293077538 cites W2149012699 @default.
- W4293077538 cites W2480177474 @default.
- W4293077538 cites W2498017881 @default.
- W4293077538 cites W2503062631 @default.
- W4293077538 cites W2549345761 @default.
- W4293077538 cites W2602275733 @default.
- W4293077538 cites W2606206351 @default.
- W4293077538 cites W2747175208 @default.
- W4293077538 cites W2792291478 @default.
- W4293077538 cites W2809148419 @default.
- W4293077538 cites W2962991181 @default.
- W4293077538 cites W3026228565 @default.
- W4293077538 cites W3090848556 @default.
- W4293077538 cites W3096623564 @default.
- W4293077538 cites W3156032009 @default.
- W4293077538 cites W3186993940 @default.
- W4293077538 cites W3194459689 @default.
- W4293077538 cites W3201080625 @default.
- W4293077538 cites W3202281568 @default.
- W4293077538 cites W3210386267 @default.
- W4293077538 cites W4206786481 @default.
- W4293077538 cites W4299313888 @default.
- W4293077538 doi "https://doi.org/10.1109/tgcn.2022.3162649" @default.
- W4293077538 hasPublicationYear "2022" @default.
- W4293077538 type Work @default.
- W4293077538 citedByCount "2" @default.
- W4293077538 countsByYear W42930775382023 @default.
- W4293077538 crossrefType "journal-article" @default.
- W4293077538 hasAuthorship W4293077538A5007332382 @default.
- W4293077538 hasAuthorship W4293077538A5042303283 @default.
- W4293077538 hasAuthorship W4293077538A5045240151 @default.
- W4293077538 hasAuthorship W4293077538A5045997530 @default.
- W4293077538 hasAuthorship W4293077538A5047248381 @default.
- W4293077538 hasAuthorship W4293077538A5049446052 @default.
- W4293077538 hasAuthorship W4293077538A5065487579 @default.
- W4293077538 hasAuthorship W4293077538A5074589029 @default.
- W4293077538 hasAuthorship W4293077538A5085778638 @default.
- W4293077538 hasAuthorship W4293077538A5085845806 @default.
- W4293077538 hasBestOaLocation W42930775382 @default.
- W4293077538 hasConcept C104317684 @default.
- W4293077538 hasConcept C127413603 @default.
- W4293077538 hasConcept C154945302 @default.
- W4293077538 hasConcept C171146098 @default.
- W4293077538 hasConcept C185592680 @default.
- W4293077538 hasConcept C199360897 @default.
- W4293077538 hasConcept C22212356 @default.
- W4293077538 hasConcept C2779843651 @default.
- W4293077538 hasConcept C2779888511 @default.
- W4293077538 hasConcept C41008148 @default.
- W4293077538 hasConcept C44154836 @default.
- W4293077538 hasConcept C45882903 @default.
- W4293077538 hasConcept C47796450 @default.
- W4293077538 hasConcept C55493867 @default.
- W4293077538 hasConcept C63479239 @default.
- W4293077538 hasConcept C64543145 @default.
- W4293077538 hasConcept C79403827 @default.
- W4293077538 hasConcept C97541855 @default.
- W4293077538 hasConceptScore W4293077538C104317684 @default.
- W4293077538 hasConceptScore W4293077538C127413603 @default.
- W4293077538 hasConceptScore W4293077538C154945302 @default.
- W4293077538 hasConceptScore W4293077538C171146098 @default.
- W4293077538 hasConceptScore W4293077538C185592680 @default.
- W4293077538 hasConceptScore W4293077538C199360897 @default.
- W4293077538 hasConceptScore W4293077538C22212356 @default.
- W4293077538 hasConceptScore W4293077538C2779843651 @default.
- W4293077538 hasConceptScore W4293077538C2779888511 @default.
- W4293077538 hasConceptScore W4293077538C41008148 @default.
- W4293077538 hasConceptScore W4293077538C44154836 @default.
- W4293077538 hasConceptScore W4293077538C45882903 @default.
- W4293077538 hasConceptScore W4293077538C47796450 @default.
- W4293077538 hasConceptScore W4293077538C55493867 @default.
- W4293077538 hasConceptScore W4293077538C63479239 @default.
- W4293077538 hasConceptScore W4293077538C64543145 @default.
- W4293077538 hasConceptScore W4293077538C79403827 @default.
- W4293077538 hasConceptScore W4293077538C97541855 @default.
- W4293077538 hasFunder F4320321001 @default.
- W4293077538 hasFunder F4320335777 @default.