Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293077993> ?p ?o ?g. }
- W4293077993 endingPage "15" @default.
- W4293077993 startingPage "1" @default.
- W4293077993 abstract "The prediction of pick-up regions for online ride-hailing can reduce the number of vacant vehicles on the streets, which will optimize the transportation efficiency of cities, reduce energy consumption and carbon emissions, and increase the income of online ride-hailing drivers. However, traditional studies have ignored the temporal and spatial dependencies among pick-up regions and the effects of similarity of POI attributes in different regions in modelling, making the features of the model incomplete. To address the above problems, we propose a new multigraph aggregation spatiotemporal graph convolutional network (MAST-GCN) model to predict pick-up regions for online ride-hailing. In this paper, we propose a graph aggregation method to extract the spatiotemporal aspects and preference features of spatial graphs, order graphs, and POI graphs. GCN is used on the aggregated graphs to extract spatial dimensional features from graph-structured data. The historical data are sequentially divided into temporal granularity according to the period, and convolution operations are performed on the time axis to obtain the features in the temporal dimension. The attention mechanism is used to assign different weights to features with strong periodicity and strong correlation, which effectively solves the pick-up region prediction problem. We implemented the MAST-GCN model based on the PyTorch framework, stacked with a two-layer spatiotemporal graph convolution module, where the dimension of the graph convolution is 64. We evaluate the proposed model on two real-world large scale ride-hailing datasets. The results show that our method provides significant improvements over state-of-the-art baselines." @default.
- W4293077993 created "2022-08-26" @default.
- W4293077993 creator A5033955482 @default.
- W4293077993 creator A5053880803 @default.
- W4293077993 creator A5055056809 @default.
- W4293077993 creator A5064682813 @default.
- W4293077993 creator A5079284362 @default.
- W4293077993 date "2022-06-08" @default.
- W4293077993 modified "2023-10-14" @default.
- W4293077993 title "Multigraph Aggregation Spatiotemporal Graph Convolution Network for Ride-Hailing Pick-Up Region Prediction" @default.
- W4293077993 cites W1990444226 @default.
- W4293077993 cites W2084971769 @default.
- W4293077993 cites W2093776599 @default.
- W4293077993 cites W2107634881 @default.
- W4293077993 cites W2585077751 @default.
- W4293077993 cites W2783767902 @default.
- W4293077993 cites W2889166715 @default.
- W4293077993 cites W2889260000 @default.
- W4293077993 cites W2889352281 @default.
- W4293077993 cites W2890500601 @default.
- W4293077993 cites W2901504064 @default.
- W4293077993 cites W2904832339 @default.
- W4293077993 cites W2905463021 @default.
- W4293077993 cites W2920220159 @default.
- W4293077993 cites W2944707720 @default.
- W4293077993 cites W2946160394 @default.
- W4293077993 cites W2949732208 @default.
- W4293077993 cites W2984626942 @default.
- W4293077993 cites W2987370842 @default.
- W4293077993 cites W2998559444 @default.
- W4293077993 cites W3011097042 @default.
- W4293077993 cites W3013365237 @default.
- W4293077993 cites W3014235068 @default.
- W4293077993 cites W3017369591 @default.
- W4293077993 cites W3040109438 @default.
- W4293077993 cites W3048593054 @default.
- W4293077993 cites W3109254449 @default.
- W4293077993 cites W3111099728 @default.
- W4293077993 cites W3129017148 @default.
- W4293077993 cites W3160782080 @default.
- W4293077993 cites W3184564372 @default.
- W4293077993 cites W3202283237 @default.
- W4293077993 cites W3113128317 @default.
- W4293077993 doi "https://doi.org/10.1155/2022/9815133" @default.
- W4293077993 hasPublicationYear "2022" @default.
- W4293077993 type Work @default.
- W4293077993 citedByCount "0" @default.
- W4293077993 crossrefType "journal-article" @default.
- W4293077993 hasAuthorship W4293077993A5033955482 @default.
- W4293077993 hasAuthorship W4293077993A5053880803 @default.
- W4293077993 hasAuthorship W4293077993A5055056809 @default.
- W4293077993 hasAuthorship W4293077993A5064682813 @default.
- W4293077993 hasAuthorship W4293077993A5079284362 @default.
- W4293077993 hasBestOaLocation W42930779931 @default.
- W4293077993 hasConcept C111919701 @default.
- W4293077993 hasConcept C118615104 @default.
- W4293077993 hasConcept C124101348 @default.
- W4293077993 hasConcept C132525143 @default.
- W4293077993 hasConcept C154945302 @default.
- W4293077993 hasConcept C17758045 @default.
- W4293077993 hasConcept C177774035 @default.
- W4293077993 hasConcept C2781221856 @default.
- W4293077993 hasConcept C2993807640 @default.
- W4293077993 hasConcept C33923547 @default.
- W4293077993 hasConcept C41008148 @default.
- W4293077993 hasConcept C45347329 @default.
- W4293077993 hasConcept C50644808 @default.
- W4293077993 hasConcept C80444323 @default.
- W4293077993 hasConceptScore W4293077993C111919701 @default.
- W4293077993 hasConceptScore W4293077993C118615104 @default.
- W4293077993 hasConceptScore W4293077993C124101348 @default.
- W4293077993 hasConceptScore W4293077993C132525143 @default.
- W4293077993 hasConceptScore W4293077993C154945302 @default.
- W4293077993 hasConceptScore W4293077993C17758045 @default.
- W4293077993 hasConceptScore W4293077993C177774035 @default.
- W4293077993 hasConceptScore W4293077993C2781221856 @default.
- W4293077993 hasConceptScore W4293077993C2993807640 @default.
- W4293077993 hasConceptScore W4293077993C33923547 @default.
- W4293077993 hasConceptScore W4293077993C41008148 @default.
- W4293077993 hasConceptScore W4293077993C45347329 @default.
- W4293077993 hasConceptScore W4293077993C50644808 @default.
- W4293077993 hasConceptScore W4293077993C80444323 @default.
- W4293077993 hasFunder F4320322186 @default.
- W4293077993 hasLocation W42930779931 @default.
- W4293077993 hasOpenAccess W4293077993 @default.
- W4293077993 hasPrimaryLocation W42930779931 @default.
- W4293077993 hasRelatedWork W1987773206 @default.
- W4293077993 hasRelatedWork W2102275089 @default.
- W4293077993 hasRelatedWork W2945365184 @default.
- W4293077993 hasRelatedWork W2971267355 @default.
- W4293077993 hasRelatedWork W3008248018 @default.
- W4293077993 hasRelatedWork W4288099645 @default.
- W4293077993 hasRelatedWork W4293077993 @default.
- W4293077993 hasRelatedWork W4307640250 @default.
- W4293077993 hasRelatedWork W4320149722 @default.
- W4293077993 hasRelatedWork W4383860413 @default.
- W4293077993 hasVolume "2022" @default.
- W4293077993 isParatext "false" @default.