Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293095969> ?p ?o ?g. }
- W4293095969 endingPage "20974" @default.
- W4293095969 startingPage "20960" @default.
- W4293095969 abstract "The objective of this research is to model the “L” color parameter that gives the dark color of biochar to the soil, with machine learning methods. In the study, 24 different deep learning neural networks (DLNN) and 8 different artificial neural networks architectures were utilized. At the modeling stage, models were produced for 3 different input sets by using carbonization temperature, holding time, gas flow rate, “a” and “b” color parameters with different combinations. “a” and “b” color parameters are indicators of redness-greenness, and blueness-yellowness, respectively. Sensitivity analyses were performed on network architectures that gave the best results. According to the results, the best models were obtained in DLNN architectures. L color parameter was modeled with the accuracy of 76.5%, 96%, and 98% using first, second, and third input sets respectively. In the sensitivity analysis of input set 3, it was determined that the effect of “a” and “b” values on the “L” color change of biochar was more than 50%. In this input set, the effects of carbonization temperature, gas flow rate, and holding time on the “L” color parameter of biochar were determined as 22.1%, 18.5%, and 9.5%, respectively. According to elemental analysis results, the C ratio changed directly proportional to carbonization temperature and inversely proportional to holding time and gas flow rate. H and N ratios decreased depending on the increase in the carbonization temperature, holding time, and gas flow rate. Thanks to this study, both the best models that predict the color parameter L, which is an indicator of the dark color of biochar and the impacts of the factors used in the production phase on the color of biochar are determined." @default.
- W4293095969 created "2022-08-26" @default.
- W4293095969 creator A5020087524 @default.
- W4293095969 creator A5044888773 @default.
- W4293095969 creator A5061543646 @default.
- W4293095969 date "2022-08-25" @default.
- W4293095969 modified "2023-09-27" @default.
- W4293095969 title "A comparative study of deep learning neural network architectures and sensitivity analyses for the prediction of color changes in biochar" @default.
- W4293095969 cites W1968947388 @default.
- W4293095969 cites W1983131695 @default.
- W4293095969 cites W1983586967 @default.
- W4293095969 cites W1996039992 @default.
- W4293095969 cites W2005950755 @default.
- W4293095969 cites W2019609756 @default.
- W4293095969 cites W2025025456 @default.
- W4293095969 cites W2041487690 @default.
- W4293095969 cites W2045855671 @default.
- W4293095969 cites W2055257839 @default.
- W4293095969 cites W2069425102 @default.
- W4293095969 cites W2069878636 @default.
- W4293095969 cites W2075474542 @default.
- W4293095969 cites W2078659027 @default.
- W4293095969 cites W2086810019 @default.
- W4293095969 cites W2087412438 @default.
- W4293095969 cites W2148583852 @default.
- W4293095969 cites W2216536395 @default.
- W4293095969 cites W2337972789 @default.
- W4293095969 cites W2342120821 @default.
- W4293095969 cites W2399436885 @default.
- W4293095969 cites W2468612731 @default.
- W4293095969 cites W2473849514 @default.
- W4293095969 cites W2503960884 @default.
- W4293095969 cites W2620977889 @default.
- W4293095969 cites W2873248319 @default.
- W4293095969 cites W2908569922 @default.
- W4293095969 cites W2920304350 @default.
- W4293095969 cites W2947689456 @default.
- W4293095969 cites W2974551906 @default.
- W4293095969 cites W2980326698 @default.
- W4293095969 cites W2991298489 @default.
- W4293095969 cites W2998845379 @default.
- W4293095969 cites W3004215029 @default.
- W4293095969 cites W3007658829 @default.
- W4293095969 cites W3042138923 @default.
- W4293095969 cites W3129939181 @default.
- W4293095969 cites W3152970333 @default.
- W4293095969 cites W815196202 @default.
- W4293095969 doi "https://doi.org/10.1002/er.8577" @default.
- W4293095969 hasPublicationYear "2022" @default.
- W4293095969 type Work @default.
- W4293095969 citedByCount "0" @default.
- W4293095969 crossrefType "journal-article" @default.
- W4293095969 hasAuthorship W4293095969A5020087524 @default.
- W4293095969 hasAuthorship W4293095969A5044888773 @default.
- W4293095969 hasAuthorship W4293095969A5061543646 @default.
- W4293095969 hasConcept C113196181 @default.
- W4293095969 hasConcept C121332964 @default.
- W4293095969 hasConcept C127413603 @default.
- W4293095969 hasConcept C150394285 @default.
- W4293095969 hasConcept C154877778 @default.
- W4293095969 hasConcept C154945302 @default.
- W4293095969 hasConcept C172120300 @default.
- W4293095969 hasConcept C178790620 @default.
- W4293095969 hasConcept C185592680 @default.
- W4293095969 hasConcept C186060115 @default.
- W4293095969 hasConcept C21200559 @default.
- W4293095969 hasConcept C24326235 @default.
- W4293095969 hasConcept C2524010 @default.
- W4293095969 hasConcept C33923547 @default.
- W4293095969 hasConcept C36759035 @default.
- W4293095969 hasConcept C38349280 @default.
- W4293095969 hasConcept C41008148 @default.
- W4293095969 hasConcept C42360764 @default.
- W4293095969 hasConcept C43617362 @default.
- W4293095969 hasConcept C50644808 @default.
- W4293095969 hasConcept C56085101 @default.
- W4293095969 hasConcept C86803240 @default.
- W4293095969 hasConcept C97355855 @default.
- W4293095969 hasConceptScore W4293095969C113196181 @default.
- W4293095969 hasConceptScore W4293095969C121332964 @default.
- W4293095969 hasConceptScore W4293095969C127413603 @default.
- W4293095969 hasConceptScore W4293095969C150394285 @default.
- W4293095969 hasConceptScore W4293095969C154877778 @default.
- W4293095969 hasConceptScore W4293095969C154945302 @default.
- W4293095969 hasConceptScore W4293095969C172120300 @default.
- W4293095969 hasConceptScore W4293095969C178790620 @default.
- W4293095969 hasConceptScore W4293095969C185592680 @default.
- W4293095969 hasConceptScore W4293095969C186060115 @default.
- W4293095969 hasConceptScore W4293095969C21200559 @default.
- W4293095969 hasConceptScore W4293095969C24326235 @default.
- W4293095969 hasConceptScore W4293095969C2524010 @default.
- W4293095969 hasConceptScore W4293095969C33923547 @default.
- W4293095969 hasConceptScore W4293095969C36759035 @default.
- W4293095969 hasConceptScore W4293095969C38349280 @default.
- W4293095969 hasConceptScore W4293095969C41008148 @default.
- W4293095969 hasConceptScore W4293095969C42360764 @default.
- W4293095969 hasConceptScore W4293095969C43617362 @default.
- W4293095969 hasConceptScore W4293095969C50644808 @default.