Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293100501> ?p ?o ?g. }
- W4293100501 abstract "Abstract Neural representation is often described by the tuning curves of individual neurons with respect to certain stimulus variables. Despite this tradition, it has become increasingly clear that neural tuning can vary substantially in accordance with a collection of internal and external factors. A challenge we are facing is the lack of appropriate methods to accurately capture trial-to-trial tuning variability directly from the noisy neural responses. Here we introduce an unsupervised statistical approach, Poisson functional principal component analysis (Pf-PCA), which identifies different sources of systematic tuning fluctuations, moreover encompassing several current models (e.g.,multiplicative gain models) as special cases. Applying this method to neural data recorded from macaque primary visual cortex– a paradigmatic case for which the tuning curve approach has been scientific essential– we discovered a novel simple relationship governing the variability of orientation tuning, which unifies different types of gain changes proposed previously. By decomposing the neural tuning variability into interpretable components, our method enables discovery of new structure of the neural code, capturing the influence of the stimulus drive and internal states simultaneously." @default.
- W4293100501 created "2022-08-26" @default.
- W4293100501 creator A5003487806 @default.
- W4293100501 creator A5081036206 @default.
- W4293100501 date "2022-03-21" @default.
- W4293100501 modified "2023-10-16" @default.
- W4293100501 title "Unsupervised approach to decomposing neural tuning variability" @default.
- W4293100501 cites W109907426 @default.
- W4293100501 cites W1484716989 @default.
- W4293100501 cites W1485458577 @default.
- W4293100501 cites W1496712726 @default.
- W4293100501 cites W1675937554 @default.
- W4293100501 cites W1704871680 @default.
- W4293100501 cites W1913473716 @default.
- W4293100501 cites W1961056875 @default.
- W4293100501 cites W1961971483 @default.
- W4293100501 cites W1969233644 @default.
- W4293100501 cites W1970121738 @default.
- W4293100501 cites W1972660142 @default.
- W4293100501 cites W1972869628 @default.
- W4293100501 cites W1981520343 @default.
- W4293100501 cites W1984667240 @default.
- W4293100501 cites W1984871000 @default.
- W4293100501 cites W1987638762 @default.
- W4293100501 cites W1999835005 @default.
- W4293100501 cites W2004550838 @default.
- W4293100501 cites W2005704307 @default.
- W4293100501 cites W2006229337 @default.
- W4293100501 cites W2014339193 @default.
- W4293100501 cites W2015505597 @default.
- W4293100501 cites W2023486727 @default.
- W4293100501 cites W2028070115 @default.
- W4293100501 cites W2035849979 @default.
- W4293100501 cites W2039489843 @default.
- W4293100501 cites W2047188683 @default.
- W4293100501 cites W2049633694 @default.
- W4293100501 cites W2051217769 @default.
- W4293100501 cites W2052515926 @default.
- W4293100501 cites W2054638608 @default.
- W4293100501 cites W2055339690 @default.
- W4293100501 cites W2057203083 @default.
- W4293100501 cites W206706296 @default.
- W4293100501 cites W2067165060 @default.
- W4293100501 cites W2069519142 @default.
- W4293100501 cites W2082448915 @default.
- W4293100501 cites W2093386234 @default.
- W4293100501 cites W2098933766 @default.
- W4293100501 cites W2102584403 @default.
- W4293100501 cites W2103212315 @default.
- W4293100501 cites W2105071895 @default.
- W4293100501 cites W2107313868 @default.
- W4293100501 cites W2109251081 @default.
- W4293100501 cites W2116279703 @default.
- W4293100501 cites W2125421120 @default.
- W4293100501 cites W2125733184 @default.
- W4293100501 cites W2126020484 @default.
- W4293100501 cites W2126430831 @default.
- W4293100501 cites W2129983824 @default.
- W4293100501 cites W2135370405 @default.
- W4293100501 cites W2140552585 @default.
- W4293100501 cites W2142963090 @default.
- W4293100501 cites W2144095870 @default.
- W4293100501 cites W2146353372 @default.
- W4293100501 cites W2148439693 @default.
- W4293100501 cites W2150144034 @default.
- W4293100501 cites W2150739631 @default.
- W4293100501 cites W2153633111 @default.
- W4293100501 cites W2159749299 @default.
- W4293100501 cites W2166405697 @default.
- W4293100501 cites W2167110518 @default.
- W4293100501 cites W2167403166 @default.
- W4293100501 cites W2167906274 @default.
- W4293100501 cites W2170235125 @default.
- W4293100501 cites W2188049816 @default.
- W4293100501 cites W2276275738 @default.
- W4293100501 cites W2285746460 @default.
- W4293100501 cites W2292115143 @default.
- W4293100501 cites W2294807626 @default.
- W4293100501 cites W2538677090 @default.
- W4293100501 cites W2803634183 @default.
- W4293100501 cites W2804499930 @default.
- W4293100501 cites W2943579093 @default.
- W4293100501 cites W2950724491 @default.
- W4293100501 cites W2951826166 @default.
- W4293100501 cites W2952487041 @default.
- W4293100501 cites W2953091345 @default.
- W4293100501 cites W2965343927 @default.
- W4293100501 cites W2968241541 @default.
- W4293100501 cites W2976066134 @default.
- W4293100501 cites W3000035129 @default.
- W4293100501 cites W3036422655 @default.
- W4293100501 cites W3043198551 @default.
- W4293100501 cites W3044014415 @default.
- W4293100501 cites W3102454059 @default.
- W4293100501 cites W3200345763 @default.
- W4293100501 cites W4251895690 @default.
- W4293100501 cites W4292156489 @default.
- W4293100501 doi "https://doi.org/10.1101/2022.03.19.484958" @default.
- W4293100501 hasPublicationYear "2022" @default.
- W4293100501 type Work @default.