Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293102006> ?p ?o ?g. }
- W4293102006 endingPage "93" @default.
- W4293102006 startingPage "80" @default.
- W4293102006 abstract "Early detection of the COVID-19 infection is the key to avoiding fatalities. Chest radiography has proven to be an effective and low-cost solution for detecting the virus. It is important to evaluate the potential of deep learning models for COVID-19 detection from the x-ray images for quick and early detection of COVID-19 with high accuracy. We conducted a study that evaluates the potential and performance of various Convolutional Neural Networks (CNN) architectures for detecting the COVID-19 on a dataset consisting of 5902 chest X-ray images having 2276 instances of X-ray images of COVID-19 patients and 3626 images of healthy and non-COVID-19 pneumonia X-rays. The performance of the models is assessed using metrics like accuracy, specificity, sensitivity, F1 Score, ROC curve, etc. The results suggest that the DenseNet-121 model proved to be the better choice among evaluated architectures for COVID-19 detection from X-ray images in terms of overall performance with an accuracy of 98.2%, sensitivity of 97.6%, and specificity of 98.4%. We conclude that there is a need for further evaluation of the CNN architectures on large, real-world, and diverse datasets for obtaining generalizable results for a reliable diagnosis." @default.
- W4293102006 created "2022-08-26" @default.
- W4293102006 creator A5004154824 @default.
- W4293102006 creator A5030708005 @default.
- W4293102006 creator A5048244759 @default.
- W4293102006 creator A5054048430 @default.
- W4293102006 creator A5090462250 @default.
- W4293102006 date "2022-03-21" @default.
- W4293102006 modified "2023-10-16" @default.
- W4293102006 title "Performance evaluation of CNN architectures for COVID-19 detection from X-ray images" @default.
- W4293102006 cites W2005394924 @default.
- W4293102006 cites W2112796928 @default.
- W4293102006 cites W2112834177 @default.
- W4293102006 cites W2183341477 @default.
- W4293102006 cites W2194775991 @default.
- W4293102006 cites W2323929895 @default.
- W4293102006 cites W2531409750 @default.
- W4293102006 cites W2795964626 @default.
- W4293102006 cites W2799903018 @default.
- W4293102006 cites W2963446712 @default.
- W4293102006 cites W2995942064 @default.
- W4293102006 cites W3008985036 @default.
- W4293102006 cites W3013277995 @default.
- W4293102006 cites W3013601031 @default.
- W4293102006 cites W3015292413 @default.
- W4293102006 cites W3015883707 @default.
- W4293102006 cites W3016488464 @default.
- W4293102006 cites W3017855299 @default.
- W4293102006 cites W3025948831 @default.
- W4293102006 cites W3044569690 @default.
- W4293102006 cites W3045460727 @default.
- W4293102006 cites W3046663788 @default.
- W4293102006 cites W3064374686 @default.
- W4293102006 cites W3081981736 @default.
- W4293102006 cites W3083753334 @default.
- W4293102006 cites W3085674933 @default.
- W4293102006 cites W3087000505 @default.
- W4293102006 cites W3087636224 @default.
- W4293102006 cites W3090449816 @default.
- W4293102006 cites W3091978650 @default.
- W4293102006 cites W3101633406 @default.
- W4293102006 cites W3101906250 @default.
- W4293102006 cites W3130172878 @default.
- W4293102006 cites W3131296454 @default.
- W4293102006 cites W3179490952 @default.
- W4293102006 cites W3191075711 @default.
- W4293102006 cites W3213797046 @default.
- W4293102006 doi "https://doi.org/10.1080/21681163.2022.2052750" @default.
- W4293102006 hasPublicationYear "2022" @default.
- W4293102006 type Work @default.
- W4293102006 citedByCount "0" @default.
- W4293102006 crossrefType "journal-article" @default.
- W4293102006 hasAuthorship W4293102006A5004154824 @default.
- W4293102006 hasAuthorship W4293102006A5030708005 @default.
- W4293102006 hasAuthorship W4293102006A5048244759 @default.
- W4293102006 hasAuthorship W4293102006A5054048430 @default.
- W4293102006 hasAuthorship W4293102006A5090462250 @default.
- W4293102006 hasConcept C108583219 @default.
- W4293102006 hasConcept C112705442 @default.
- W4293102006 hasConcept C116675565 @default.
- W4293102006 hasConcept C119857082 @default.
- W4293102006 hasConcept C126322002 @default.
- W4293102006 hasConcept C126838900 @default.
- W4293102006 hasConcept C127413603 @default.
- W4293102006 hasConcept C142724271 @default.
- W4293102006 hasConcept C153180895 @default.
- W4293102006 hasConcept C154945302 @default.
- W4293102006 hasConcept C21200559 @default.
- W4293102006 hasConcept C24326235 @default.
- W4293102006 hasConcept C26517878 @default.
- W4293102006 hasConcept C2777914695 @default.
- W4293102006 hasConcept C2779134260 @default.
- W4293102006 hasConcept C3006700255 @default.
- W4293102006 hasConcept C3007834351 @default.
- W4293102006 hasConcept C3008058167 @default.
- W4293102006 hasConcept C3020225094 @default.
- W4293102006 hasConcept C36454342 @default.
- W4293102006 hasConcept C38652104 @default.
- W4293102006 hasConcept C41008148 @default.
- W4293102006 hasConcept C524204448 @default.
- W4293102006 hasConcept C58471807 @default.
- W4293102006 hasConcept C71924100 @default.
- W4293102006 hasConcept C81363708 @default.
- W4293102006 hasConceptScore W4293102006C108583219 @default.
- W4293102006 hasConceptScore W4293102006C112705442 @default.
- W4293102006 hasConceptScore W4293102006C116675565 @default.
- W4293102006 hasConceptScore W4293102006C119857082 @default.
- W4293102006 hasConceptScore W4293102006C126322002 @default.
- W4293102006 hasConceptScore W4293102006C126838900 @default.
- W4293102006 hasConceptScore W4293102006C127413603 @default.
- W4293102006 hasConceptScore W4293102006C142724271 @default.
- W4293102006 hasConceptScore W4293102006C153180895 @default.
- W4293102006 hasConceptScore W4293102006C154945302 @default.
- W4293102006 hasConceptScore W4293102006C21200559 @default.
- W4293102006 hasConceptScore W4293102006C24326235 @default.
- W4293102006 hasConceptScore W4293102006C26517878 @default.
- W4293102006 hasConceptScore W4293102006C2777914695 @default.
- W4293102006 hasConceptScore W4293102006C2779134260 @default.