Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293124857> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4293124857 endingPage "3876" @default.
- W4293124857 startingPage "3867" @default.
- W4293124857 abstract "On the basis of quality estimate, early prediction and identification of software flaws is crucial in the software area. Prediction of Software Defects SDP is defined as the process of exposing software to flaws through the use of prediction models and defect datasets. This study recommended a method for dealing with the class imbalance problem based on Improved Random Synthetic Minority Oversampling Technique (SMOTE), followed by Linear Pearson Correlation Technique to perform feature selection to predict software failure. On the basis of the SMOTE data sampling approach, a strategy for software defect prediction is given in this paper. To address the class imbalance, the defect datasets were initially processed using the Improved Random-SMOTE Oversampling technique. Then, using the Linear Pearson Correlation approach, the features were chosen, and using the k-fold cross validation process, the samples were split into training and testing datasets. Finally, Heuristic Learning Vector Quantization is used to classify data in order to predict software problems. Based on measures like sensitivity, specificity, FPR, and accuracy rate for two separate datasets, the performance of the proposed strategy is contrasted with the approaches to classification that presently exist." @default.
- W4293124857 created "2022-08-26" @default.
- W4293124857 creator A5001039206 @default.
- W4293124857 creator A5010587313 @default.
- W4293124857 creator A5037943814 @default.
- W4293124857 creator A5073771030 @default.
- W4293124857 creator A5090134402 @default.
- W4293124857 creator A5091768058 @default.
- W4293124857 date "2023-03-09" @default.
- W4293124857 modified "2023-10-14" @default.
- W4293124857 title "Data sampling approach using heuristic Learning Vector Quantization (LVQ) classifier for software defect prediction" @default.
- W4293124857 cites W2599212561 @default.
- W4293124857 cites W2604881091 @default.
- W4293124857 cites W2731935965 @default.
- W4293124857 cites W2761745500 @default.
- W4293124857 cites W2783657687 @default.
- W4293124857 cites W2791812915 @default.
- W4293124857 cites W2796511178 @default.
- W4293124857 cites W2808595449 @default.
- W4293124857 cites W2913474130 @default.
- W4293124857 cites W2991475936 @default.
- W4293124857 cites W3009421588 @default.
- W4293124857 cites W3182635198 @default.
- W4293124857 cites W3184772611 @default.
- W4293124857 cites W4245807786 @default.
- W4293124857 doi "https://doi.org/10.3233/jifs-220480" @default.
- W4293124857 hasPublicationYear "2023" @default.
- W4293124857 type Work @default.
- W4293124857 citedByCount "2" @default.
- W4293124857 countsByYear W42931248572023 @default.
- W4293124857 crossrefType "journal-article" @default.
- W4293124857 hasAuthorship W4293124857A5001039206 @default.
- W4293124857 hasAuthorship W4293124857A5010587313 @default.
- W4293124857 hasAuthorship W4293124857A5037943814 @default.
- W4293124857 hasAuthorship W4293124857A5073771030 @default.
- W4293124857 hasAuthorship W4293124857A5090134402 @default.
- W4293124857 hasAuthorship W4293124857A5091768058 @default.
- W4293124857 hasConcept C119857082 @default.
- W4293124857 hasConcept C12267149 @default.
- W4293124857 hasConcept C124101348 @default.
- W4293124857 hasConcept C148483581 @default.
- W4293124857 hasConcept C153180895 @default.
- W4293124857 hasConcept C154945302 @default.
- W4293124857 hasConcept C173801870 @default.
- W4293124857 hasConcept C197323446 @default.
- W4293124857 hasConcept C199360897 @default.
- W4293124857 hasConcept C199833920 @default.
- W4293124857 hasConcept C2776257435 @default.
- W4293124857 hasConcept C2777904410 @default.
- W4293124857 hasConcept C31258907 @default.
- W4293124857 hasConcept C40567965 @default.
- W4293124857 hasConcept C41008148 @default.
- W4293124857 hasConcept C95623464 @default.
- W4293124857 hasConceptScore W4293124857C119857082 @default.
- W4293124857 hasConceptScore W4293124857C12267149 @default.
- W4293124857 hasConceptScore W4293124857C124101348 @default.
- W4293124857 hasConceptScore W4293124857C148483581 @default.
- W4293124857 hasConceptScore W4293124857C153180895 @default.
- W4293124857 hasConceptScore W4293124857C154945302 @default.
- W4293124857 hasConceptScore W4293124857C173801870 @default.
- W4293124857 hasConceptScore W4293124857C197323446 @default.
- W4293124857 hasConceptScore W4293124857C199360897 @default.
- W4293124857 hasConceptScore W4293124857C199833920 @default.
- W4293124857 hasConceptScore W4293124857C2776257435 @default.
- W4293124857 hasConceptScore W4293124857C2777904410 @default.
- W4293124857 hasConceptScore W4293124857C31258907 @default.
- W4293124857 hasConceptScore W4293124857C40567965 @default.
- W4293124857 hasConceptScore W4293124857C41008148 @default.
- W4293124857 hasConceptScore W4293124857C95623464 @default.
- W4293124857 hasIssue "3" @default.
- W4293124857 hasLocation W42931248571 @default.
- W4293124857 hasOpenAccess W4293124857 @default.
- W4293124857 hasPrimaryLocation W42931248571 @default.
- W4293124857 hasRelatedWork W1992825654 @default.
- W4293124857 hasRelatedWork W2013708872 @default.
- W4293124857 hasRelatedWork W2041636156 @default.
- W4293124857 hasRelatedWork W2160451891 @default.
- W4293124857 hasRelatedWork W27971500 @default.
- W4293124857 hasRelatedWork W2945281038 @default.
- W4293124857 hasRelatedWork W3105251098 @default.
- W4293124857 hasRelatedWork W3200179079 @default.
- W4293124857 hasRelatedWork W4242764575 @default.
- W4293124857 hasRelatedWork W2345184372 @default.
- W4293124857 hasVolume "44" @default.
- W4293124857 isParatext "false" @default.
- W4293124857 isRetracted "false" @default.
- W4293124857 workType "article" @default.