Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293124865> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4293124865 endingPage "3924" @default.
- W4293124865 startingPage "3915" @default.
- W4293124865 abstract "To use weighted gene correlation network analysis (WGCNA) and machine learning algorithm to predict classification of early pulmonary nodes with public databases. The expression data and clinical data of lung cancer patients were firstly extracted from public database (GTEx and TCGA) to study the differentially expressed genes (DEGs) of lung adenocarcinoma (LUAD). The intersection of three R packages (Dseq2, Limma, EdgeR) methods were selected as candidate DEGs for further study. WGCNA was used to obtain relevant modules and key genes of lung cancer classification, GO and KEGG enrichment analysis was performed. The model was built using two machine learning methods, Least Absolute Shrinkage and Selection Operator (LASSO) regression and tumor classification was also predicted with extreme Gradient Boosting (XGBoost) algorithm. DEGs analysis revealed that there were 1306 LUAD genes. WGCNA module analysis showed that a total of 116 genes were significantly related to classification, and module genes were mainly related to 14 KEGG pathways. The machine learning algorithm identified 10 target genes by LASSO regression analysis of differential genes, and 18 genes were identified by XGBoost model. A total of 6 genes were found from the intersection of the above methods as classification signatures of early pulmonary nodules, including “HMGB3” “ARHGAP6” “TCF21” “FCN3” “COL6A6” “GOLM1”. Using DEGs analysis, WGCNA method and machine learning algorithm, six gene signatures related to early stage of LUAD, which can assist clinicians in disease classification prediction." @default.
- W4293124865 created "2022-08-26" @default.
- W4293124865 creator A5008334574 @default.
- W4293124865 creator A5015467309 @default.
- W4293124865 creator A5053703803 @default.
- W4293124865 creator A5055328507 @default.
- W4293124865 date "2022-08-26" @default.
- W4293124865 modified "2023-09-25" @default.
- W4293124865 title "Classification prediction of early pulmonary nodes based on weighted gene correlation network analysis and machine learning" @default.
- W4293124865 cites W1843968423 @default.
- W4293124865 cites W1966327575 @default.
- W4293124865 cites W1985752801 @default.
- W4293124865 cites W2025183726 @default.
- W4293124865 cites W2035618305 @default.
- W4293124865 cites W2104224322 @default.
- W4293124865 cites W2108819945 @default.
- W4293124865 cites W2140897623 @default.
- W4293124865 cites W2147246240 @default.
- W4293124865 cites W2156508634 @default.
- W4293124865 cites W2262249917 @default.
- W4293124865 cites W2607129810 @default.
- W4293124865 cites W2781818593 @default.
- W4293124865 cites W2890694729 @default.
- W4293124865 cites W3022166166 @default.
- W4293124865 cites W3103935298 @default.
- W4293124865 cites W3105352306 @default.
- W4293124865 cites W3109872964 @default.
- W4293124865 cites W3113102000 @default.
- W4293124865 cites W3114387043 @default.
- W4293124865 cites W3135900276 @default.
- W4293124865 cites W3193293519 @default.
- W4293124865 cites W4210778016 @default.
- W4293124865 cites W4230096730 @default.
- W4293124865 cites W2946179714 @default.
- W4293124865 doi "https://doi.org/10.1007/s00432-022-04312-7" @default.
- W4293124865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36018512" @default.
- W4293124865 hasPublicationYear "2022" @default.
- W4293124865 type Work @default.
- W4293124865 citedByCount "0" @default.
- W4293124865 crossrefType "journal-article" @default.
- W4293124865 hasAuthorship W4293124865A5008334574 @default.
- W4293124865 hasAuthorship W4293124865A5015467309 @default.
- W4293124865 hasAuthorship W4293124865A5053703803 @default.
- W4293124865 hasAuthorship W4293124865A5055328507 @default.
- W4293124865 hasBestOaLocation W42931248652 @default.
- W4293124865 hasConcept C104317684 @default.
- W4293124865 hasConcept C119857082 @default.
- W4293124865 hasConcept C12267149 @default.
- W4293124865 hasConcept C136764020 @default.
- W4293124865 hasConcept C150194340 @default.
- W4293124865 hasConcept C152724338 @default.
- W4293124865 hasConcept C154945302 @default.
- W4293124865 hasConcept C162317418 @default.
- W4293124865 hasConcept C37616216 @default.
- W4293124865 hasConcept C41008148 @default.
- W4293124865 hasConcept C54355233 @default.
- W4293124865 hasConcept C70721500 @default.
- W4293124865 hasConcept C86803240 @default.
- W4293124865 hasConceptScore W4293124865C104317684 @default.
- W4293124865 hasConceptScore W4293124865C119857082 @default.
- W4293124865 hasConceptScore W4293124865C12267149 @default.
- W4293124865 hasConceptScore W4293124865C136764020 @default.
- W4293124865 hasConceptScore W4293124865C150194340 @default.
- W4293124865 hasConceptScore W4293124865C152724338 @default.
- W4293124865 hasConceptScore W4293124865C154945302 @default.
- W4293124865 hasConceptScore W4293124865C162317418 @default.
- W4293124865 hasConceptScore W4293124865C37616216 @default.
- W4293124865 hasConceptScore W4293124865C41008148 @default.
- W4293124865 hasConceptScore W4293124865C54355233 @default.
- W4293124865 hasConceptScore W4293124865C70721500 @default.
- W4293124865 hasConceptScore W4293124865C86803240 @default.
- W4293124865 hasFunder F4320321001 @default.
- W4293124865 hasIssue "7" @default.
- W4293124865 hasLocation W42931248651 @default.
- W4293124865 hasLocation W42931248652 @default.
- W4293124865 hasLocation W42931248653 @default.
- W4293124865 hasOpenAccess W4293124865 @default.
- W4293124865 hasPrimaryLocation W42931248651 @default.
- W4293124865 hasRelatedWork W1996541855 @default.
- W4293124865 hasRelatedWork W2101819884 @default.
- W4293124865 hasRelatedWork W2803710604 @default.
- W4293124865 hasRelatedWork W2937631562 @default.
- W4293124865 hasRelatedWork W2979979539 @default.
- W4293124865 hasRelatedWork W3005154454 @default.
- W4293124865 hasRelatedWork W3127425528 @default.
- W4293124865 hasRelatedWork W3194539120 @default.
- W4293124865 hasRelatedWork W3195168932 @default.
- W4293124865 hasRelatedWork W4361795583 @default.
- W4293124865 hasVolume "149" @default.
- W4293124865 isParatext "false" @default.
- W4293124865 isRetracted "false" @default.
- W4293124865 workType "article" @default.