Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293147121> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4293147121 endingPage "301" @default.
- W4293147121 startingPage "287" @default.
- W4293147121 abstract "The cutting texture structure of machined surface has a great influence on defect feature information extraction after metal milling. In this paper, a machine vision defect detection method based on improved superpixel segmentation and aggregation is proposed. Firstly, an improved adaptive superpixel segmentation method based on regression prediction model is proposed. This method solves the problem that the segmentation edge of the traditional superpixel method cannot completely fit the edge of the defect target. Then, a two-level aggregation method based on limit learning machine and multi-dimensional characteristic parameters matrix is proposed to aggregate the defective and non-defective regions in the segmented images, respectively. This can eliminate the influence of the cutting texture structure of the machined surface on the defect detection. Further, the geometric feature parameters of the defect regions are extracted. The BP neural network model is constructed to predict the defect type by taking the geometrical feature parameters of the extracted defect regions as the input. Finally, the experimental verification results show that the accuracy of our proposed method for surface defect detection can reach 91.11%. This method can effectively extract more complete defect regions companied with their feature parameters, and realize the defect classification accurately. It provides an important technical support for surface quality detection in industrial automation." @default.
- W4293147121 created "2022-08-27" @default.
- W4293147121 creator A5015753345 @default.
- W4293147121 creator A5017541508 @default.
- W4293147121 creator A5027553598 @default.
- W4293147121 creator A5039431192 @default.
- W4293147121 creator A5062564835 @default.
- W4293147121 creator A5082046846 @default.
- W4293147121 date "2022-08-01" @default.
- W4293147121 modified "2023-09-30" @default.
- W4293147121 title "The machined surface defect detection of improved superpixel segmentation and two-level region aggregation based on machine vision" @default.
- W4293147121 cites W2589306531 @default.
- W4293147121 cites W2626543860 @default.
- W4293147121 cites W2763152181 @default.
- W4293147121 cites W2784032999 @default.
- W4293147121 cites W2792249564 @default.
- W4293147121 cites W2793624836 @default.
- W4293147121 cites W2889035772 @default.
- W4293147121 cites W2905416267 @default.
- W4293147121 cites W2912272978 @default.
- W4293147121 cites W2922017402 @default.
- W4293147121 cites W2945270739 @default.
- W4293147121 cites W2961786565 @default.
- W4293147121 cites W2980326480 @default.
- W4293147121 cites W2982512126 @default.
- W4293147121 cites W3104156061 @default.
- W4293147121 cites W3124942917 @default.
- W4293147121 cites W3157243312 @default.
- W4293147121 cites W3201048683 @default.
- W4293147121 doi "https://doi.org/10.1016/j.jmapro.2022.05.038" @default.
- W4293147121 hasPublicationYear "2022" @default.
- W4293147121 type Work @default.
- W4293147121 citedByCount "4" @default.
- W4293147121 countsByYear W42931471212022 @default.
- W4293147121 countsByYear W42931471212023 @default.
- W4293147121 crossrefType "journal-article" @default.
- W4293147121 hasAuthorship W4293147121A5015753345 @default.
- W4293147121 hasAuthorship W4293147121A5017541508 @default.
- W4293147121 hasAuthorship W4293147121A5027553598 @default.
- W4293147121 hasAuthorship W4293147121A5039431192 @default.
- W4293147121 hasAuthorship W4293147121A5062564835 @default.
- W4293147121 hasAuthorship W4293147121A5082046846 @default.
- W4293147121 hasConcept C115961682 @default.
- W4293147121 hasConcept C138885662 @default.
- W4293147121 hasConcept C153180895 @default.
- W4293147121 hasConcept C154945302 @default.
- W4293147121 hasConcept C162307627 @default.
- W4293147121 hasConcept C192562407 @default.
- W4293147121 hasConcept C2524010 @default.
- W4293147121 hasConcept C2776401178 @default.
- W4293147121 hasConcept C2776799497 @default.
- W4293147121 hasConcept C2781195486 @default.
- W4293147121 hasConcept C31972630 @default.
- W4293147121 hasConcept C33923547 @default.
- W4293147121 hasConcept C41008148 @default.
- W4293147121 hasConcept C41895202 @default.
- W4293147121 hasConcept C50644808 @default.
- W4293147121 hasConcept C52622490 @default.
- W4293147121 hasConcept C5339829 @default.
- W4293147121 hasConcept C89600930 @default.
- W4293147121 hasConceptScore W4293147121C115961682 @default.
- W4293147121 hasConceptScore W4293147121C138885662 @default.
- W4293147121 hasConceptScore W4293147121C153180895 @default.
- W4293147121 hasConceptScore W4293147121C154945302 @default.
- W4293147121 hasConceptScore W4293147121C162307627 @default.
- W4293147121 hasConceptScore W4293147121C192562407 @default.
- W4293147121 hasConceptScore W4293147121C2524010 @default.
- W4293147121 hasConceptScore W4293147121C2776401178 @default.
- W4293147121 hasConceptScore W4293147121C2776799497 @default.
- W4293147121 hasConceptScore W4293147121C2781195486 @default.
- W4293147121 hasConceptScore W4293147121C31972630 @default.
- W4293147121 hasConceptScore W4293147121C33923547 @default.
- W4293147121 hasConceptScore W4293147121C41008148 @default.
- W4293147121 hasConceptScore W4293147121C41895202 @default.
- W4293147121 hasConceptScore W4293147121C50644808 @default.
- W4293147121 hasConceptScore W4293147121C52622490 @default.
- W4293147121 hasConceptScore W4293147121C5339829 @default.
- W4293147121 hasConceptScore W4293147121C89600930 @default.
- W4293147121 hasLocation W42931471211 @default.
- W4293147121 hasOpenAccess W4293147121 @default.
- W4293147121 hasPrimaryLocation W42931471211 @default.
- W4293147121 hasRelatedWork W1669643531 @default.
- W4293147121 hasRelatedWork W1982826852 @default.
- W4293147121 hasRelatedWork W2005437358 @default.
- W4293147121 hasRelatedWork W2008656436 @default.
- W4293147121 hasRelatedWork W2023558673 @default.
- W4293147121 hasRelatedWork W2110230079 @default.
- W4293147121 hasRelatedWork W2134924024 @default.
- W4293147121 hasRelatedWork W2517104666 @default.
- W4293147121 hasRelatedWork W2546942002 @default.
- W4293147121 hasRelatedWork W2613186388 @default.
- W4293147121 hasVolume "80" @default.
- W4293147121 isParatext "false" @default.
- W4293147121 isRetracted "false" @default.
- W4293147121 workType "article" @default.