Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293148730> ?p ?o ?g. }
- W4293148730 endingPage "125270" @default.
- W4293148730 startingPage "125270" @default.
- W4293148730 abstract "Well logs are employed for analyzing lithology, determining formation parameters, and evaluating oil and gas reservoirs. However, in practice, well logs are often incomplete or distorted. Due to the complexity of underground structures and media heterogeneity, obtaining accurate results by using existing prediction methods is challenging. Thus, a reliable missing well logs prediction method must be developed. In this study, to estimate the missing well logs, we developed a deep learning model that combines the convolutional neural network (CNN) and bidirectional gated recurrent unit (BGRU) network with the self-attention mechanism. The proposed model comprises two modules. One module uses a CNN to extract the local morphological features of logging data, and the other one uses a BGRU to mine the variation trend and context information of logging data with depth from the output features of the CNN module. Next, the self-attention mechanism enables the network to allocate weights to highlight relevant information, thus improving the prediction accuracy. The application results on actual field data in two different areas demonstrate that the proposed model yields accurate and reliable prediction results and has feasibility and practicability." @default.
- W4293148730 created "2022-08-27" @default.
- W4293148730 creator A5007557206 @default.
- W4293148730 creator A5026148404 @default.
- W4293148730 creator A5030005269 @default.
- W4293148730 creator A5065560384 @default.
- W4293148730 date "2022-12-01" @default.
- W4293148730 modified "2023-10-12" @default.
- W4293148730 title "Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism" @default.
- W4293148730 cites W2036211716 @default.
- W4293148730 cites W2064675550 @default.
- W4293148730 cites W2080383849 @default.
- W4293148730 cites W2131774270 @default.
- W4293148730 cites W2136848157 @default.
- W4293148730 cites W2233735740 @default.
- W4293148730 cites W2789954303 @default.
- W4293148730 cites W2792806930 @default.
- W4293148730 cites W2883318912 @default.
- W4293148730 cites W2889717020 @default.
- W4293148730 cites W2894821558 @default.
- W4293148730 cites W2910852930 @default.
- W4293148730 cites W2919115771 @default.
- W4293148730 cites W2968220636 @default.
- W4293148730 cites W3003821665 @default.
- W4293148730 cites W3006782881 @default.
- W4293148730 cites W3011523529 @default.
- W4293148730 cites W3033247985 @default.
- W4293148730 cites W3038552293 @default.
- W4293148730 cites W3044088702 @default.
- W4293148730 cites W3045456820 @default.
- W4293148730 cites W3097438029 @default.
- W4293148730 cites W3097937913 @default.
- W4293148730 cites W3100777112 @default.
- W4293148730 cites W3101096144 @default.
- W4293148730 cites W3115044086 @default.
- W4293148730 cites W3157294059 @default.
- W4293148730 cites W3196967845 @default.
- W4293148730 cites W3210862969 @default.
- W4293148730 cites W4200002645 @default.
- W4293148730 cites W4231109964 @default.
- W4293148730 doi "https://doi.org/10.1016/j.energy.2022.125270" @default.
- W4293148730 hasPublicationYear "2022" @default.
- W4293148730 type Work @default.
- W4293148730 citedByCount "8" @default.
- W4293148730 countsByYear W42931487302023 @default.
- W4293148730 crossrefType "journal-article" @default.
- W4293148730 hasAuthorship W4293148730A5007557206 @default.
- W4293148730 hasAuthorship W4293148730A5026148404 @default.
- W4293148730 hasAuthorship W4293148730A5030005269 @default.
- W4293148730 hasAuthorship W4293148730A5065560384 @default.
- W4293148730 hasConcept C108583219 @default.
- W4293148730 hasConcept C111472728 @default.
- W4293148730 hasConcept C119857082 @default.
- W4293148730 hasConcept C124101348 @default.
- W4293148730 hasConcept C138885662 @default.
- W4293148730 hasConcept C151730666 @default.
- W4293148730 hasConcept C154945302 @default.
- W4293148730 hasConcept C202444582 @default.
- W4293148730 hasConcept C2779343474 @default.
- W4293148730 hasConcept C33923547 @default.
- W4293148730 hasConcept C41008148 @default.
- W4293148730 hasConcept C45804977 @default.
- W4293148730 hasConcept C50644808 @default.
- W4293148730 hasConcept C81363708 @default.
- W4293148730 hasConcept C86803240 @default.
- W4293148730 hasConcept C89611455 @default.
- W4293148730 hasConcept C9357733 @default.
- W4293148730 hasConcept C9652623 @default.
- W4293148730 hasConceptScore W4293148730C108583219 @default.
- W4293148730 hasConceptScore W4293148730C111472728 @default.
- W4293148730 hasConceptScore W4293148730C119857082 @default.
- W4293148730 hasConceptScore W4293148730C124101348 @default.
- W4293148730 hasConceptScore W4293148730C138885662 @default.
- W4293148730 hasConceptScore W4293148730C151730666 @default.
- W4293148730 hasConceptScore W4293148730C154945302 @default.
- W4293148730 hasConceptScore W4293148730C202444582 @default.
- W4293148730 hasConceptScore W4293148730C2779343474 @default.
- W4293148730 hasConceptScore W4293148730C33923547 @default.
- W4293148730 hasConceptScore W4293148730C41008148 @default.
- W4293148730 hasConceptScore W4293148730C45804977 @default.
- W4293148730 hasConceptScore W4293148730C50644808 @default.
- W4293148730 hasConceptScore W4293148730C81363708 @default.
- W4293148730 hasConceptScore W4293148730C86803240 @default.
- W4293148730 hasConceptScore W4293148730C89611455 @default.
- W4293148730 hasConceptScore W4293148730C9357733 @default.
- W4293148730 hasConceptScore W4293148730C9652623 @default.
- W4293148730 hasFunder F4320321001 @default.
- W4293148730 hasFunder F4320335575 @default.
- W4293148730 hasLocation W42931487301 @default.
- W4293148730 hasOpenAccess W4293148730 @default.
- W4293148730 hasPrimaryLocation W42931487301 @default.
- W4293148730 hasRelatedWork W2731899572 @default.
- W4293148730 hasRelatedWork W2999805992 @default.
- W4293148730 hasRelatedWork W3116150086 @default.
- W4293148730 hasRelatedWork W3133861977 @default.
- W4293148730 hasRelatedWork W4200173597 @default.
- W4293148730 hasRelatedWork W4223943233 @default.
- W4293148730 hasRelatedWork W4291897433 @default.