Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293149290> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4293149290 endingPage "105897" @default.
- W4293149290 startingPage "105897" @default.
- W4293149290 abstract "Recent advances have seen vast success in the application of metaheuristics in NP-hard combinatorial problems. A generic metaheuristic design usually consists of three core elements that jointly determine the algorithm performance, including an initial candidate solution, a guided search procedure, and a fitness function that approximates the objective value. This paper proposes a data-driven metaheuristic (DDMH) framework that leverages the predictive power of machine learning models, which exploit location information and mine structural knowledge of a supply chain network for intelligent decision making. Specifically, the proposed framework offers three performance boosters, including an initial solution heuristic, a narrowed search space, and an efficient learning-based fitness function. The framework can be readily integrated into existing MHs. As a case study, we apply DDMH to a production/distribution network design problem. Experimental results show that the DDMH outperforms the traditional MHs with better solution quality and comparable running time, especially for hard problems." @default.
- W4293149290 created "2022-08-27" @default.
- W4293149290 creator A5036139580 @default.
- W4293149290 creator A5037671044 @default.
- W4293149290 creator A5070024877 @default.
- W4293149290 date "2022-10-01" @default.
- W4293149290 modified "2023-10-13" @default.
- W4293149290 title "Towards a machine learning-aided metaheuristic framework for a production/distribution system design problem" @default.
- W4293149290 cites W1489295536 @default.
- W4293149290 cites W152644569 @default.
- W4293149290 cites W1861387101 @default.
- W4293149290 cites W1968847152 @default.
- W4293149290 cites W1972011169 @default.
- W4293149290 cites W1980478742 @default.
- W4293149290 cites W1982373167 @default.
- W4293149290 cites W1985951797 @default.
- W4293149290 cites W2027747514 @default.
- W4293149290 cites W2034627190 @default.
- W4293149290 cites W2039006033 @default.
- W4293149290 cites W2044478148 @default.
- W4293149290 cites W2049562131 @default.
- W4293149290 cites W2067430162 @default.
- W4293149290 cites W2082270393 @default.
- W4293149290 cites W2087347434 @default.
- W4293149290 cites W2088171019 @default.
- W4293149290 cites W2094099970 @default.
- W4293149290 cites W2098030255 @default.
- W4293149290 cites W2125546329 @default.
- W4293149290 cites W2131733362 @default.
- W4293149290 cites W2563592268 @default.
- W4293149290 cites W2576311753 @default.
- W4293149290 cites W2740635283 @default.
- W4293149290 cites W2746791294 @default.
- W4293149290 cites W2765098175 @default.
- W4293149290 cites W2789573942 @default.
- W4293149290 cites W2902541761 @default.
- W4293149290 cites W2909052573 @default.
- W4293149290 cites W2911964244 @default.
- W4293149290 cites W2921172095 @default.
- W4293149290 cites W2978538472 @default.
- W4293149290 cites W2998289593 @default.
- W4293149290 cites W3047863327 @default.
- W4293149290 cites W3137450444 @default.
- W4293149290 cites W3159134414 @default.
- W4293149290 cites W3178594337 @default.
- W4293149290 cites W4239852074 @default.
- W4293149290 doi "https://doi.org/10.1016/j.cor.2022.105897" @default.
- W4293149290 hasPublicationYear "2022" @default.
- W4293149290 type Work @default.
- W4293149290 citedByCount "1" @default.
- W4293149290 countsByYear W42931492902023 @default.
- W4293149290 crossrefType "journal-article" @default.
- W4293149290 hasAuthorship W4293149290A5036139580 @default.
- W4293149290 hasAuthorship W4293149290A5037671044 @default.
- W4293149290 hasAuthorship W4293149290A5070024877 @default.
- W4293149290 hasConcept C109718341 @default.
- W4293149290 hasConcept C110121322 @default.
- W4293149290 hasConcept C119857082 @default.
- W4293149290 hasConcept C126255220 @default.
- W4293149290 hasConcept C127413603 @default.
- W4293149290 hasConcept C134306372 @default.
- W4293149290 hasConcept C13736549 @default.
- W4293149290 hasConcept C139719470 @default.
- W4293149290 hasConcept C154945302 @default.
- W4293149290 hasConcept C162324750 @default.
- W4293149290 hasConcept C2778348673 @default.
- W4293149290 hasConcept C33923547 @default.
- W4293149290 hasConcept C41008148 @default.
- W4293149290 hasConceptScore W4293149290C109718341 @default.
- W4293149290 hasConceptScore W4293149290C110121322 @default.
- W4293149290 hasConceptScore W4293149290C119857082 @default.
- W4293149290 hasConceptScore W4293149290C126255220 @default.
- W4293149290 hasConceptScore W4293149290C127413603 @default.
- W4293149290 hasConceptScore W4293149290C134306372 @default.
- W4293149290 hasConceptScore W4293149290C13736549 @default.
- W4293149290 hasConceptScore W4293149290C139719470 @default.
- W4293149290 hasConceptScore W4293149290C154945302 @default.
- W4293149290 hasConceptScore W4293149290C162324750 @default.
- W4293149290 hasConceptScore W4293149290C2778348673 @default.
- W4293149290 hasConceptScore W4293149290C33923547 @default.
- W4293149290 hasConceptScore W4293149290C41008148 @default.
- W4293149290 hasLocation W42931492901 @default.
- W4293149290 hasOpenAccess W4293149290 @default.
- W4293149290 hasPrimaryLocation W42931492901 @default.
- W4293149290 hasRelatedWork W141934342 @default.
- W4293149290 hasRelatedWork W1588330912 @default.
- W4293149290 hasRelatedWork W2392415975 @default.
- W4293149290 hasRelatedWork W2789681586 @default.
- W4293149290 hasRelatedWork W2794361564 @default.
- W4293149290 hasRelatedWork W2937748796 @default.
- W4293149290 hasRelatedWork W2971069100 @default.
- W4293149290 hasRelatedWork W3156820950 @default.
- W4293149290 hasRelatedWork W4243392960 @default.
- W4293149290 hasRelatedWork W4318604471 @default.
- W4293149290 hasVolume "146" @default.
- W4293149290 isParatext "false" @default.
- W4293149290 isRetracted "false" @default.
- W4293149290 workType "article" @default.