Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293149932> ?p ?o ?g. }
- W4293149932 endingPage "3411" @default.
- W4293149932 startingPage "3387" @default.
- W4293149932 abstract "Multi-satellite and Multi-Signal-to-Noise Ratio (SNR) types provide more basic data for the monitoring of sea level height by Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technology. Few studies predict sea level height with high temporal resolution. This study proposes a theory based on GNSS-IR technology and Auto Regressive Integrated Moving Average (ARIMA) model. Taking the MAYG station as an example, the process of sea level height prediction and the determination of the best prediction scheme are shown. First, the sea level height monitored by the GNSS-IR technology is averaged hour by hour as the sea level height at the instantaneous moment. A linear interpolation method is used to compensate for the missing sea level time series. Then, the number of days to participate in the prediction of GNSS-IR sea level height and its forecast are selected for the experiment of predicting tide level. In the tide level prediction study from DOY125 to DOY153, the results of predicting the future 24 h, 48 h, and 72 h from one tide level period (29 days) illustrate that the accuracy of predicting the sea level height at 24 h is the best (R: 0.967, RMSE: 0.270 m, ME: −0.151 m), and the predicted tide level is highly consistent with the tide level measured at the tide gauge station. In addition, experiments reveal that the prediction accuracy gradually decreases with the increase of prediction time. This study verifies the feasibility of the hour-by-hour sea level prediction theory combined with the GNSS-IR technology and the ARIMA model. It proves that the theory can carry out continuous prediction of sea level, further promoting the breakthrough and transformation of GNSS-IR technology to the application level." @default.
- W4293149932 created "2022-08-27" @default.
- W4293149932 creator A5002751150 @default.
- W4293149932 creator A5003259300 @default.
- W4293149932 creator A5007980880 @default.
- W4293149932 creator A5013652689 @default.
- W4293149932 creator A5033100552 @default.
- W4293149932 date "2022-05-03" @default.
- W4293149932 modified "2023-10-01" @default.
- W4293149932 title "Hourly sea level height forecast based on GNSS-IR by using ARIMA model" @default.
- W4293149932 cites W1516263229 @default.
- W4293149932 cites W1954990778 @default.
- W4293149932 cites W1974618482 @default.
- W4293149932 cites W1978220353 @default.
- W4293149932 cites W2001785840 @default.
- W4293149932 cites W2019523159 @default.
- W4293149932 cites W2039721961 @default.
- W4293149932 cites W2054539972 @default.
- W4293149932 cites W2055375015 @default.
- W4293149932 cites W2087725274 @default.
- W4293149932 cites W2098304617 @default.
- W4293149932 cites W2136609996 @default.
- W4293149932 cites W2153871226 @default.
- W4293149932 cites W2160496639 @default.
- W4293149932 cites W2179651300 @default.
- W4293149932 cites W2261878589 @default.
- W4293149932 cites W2344797062 @default.
- W4293149932 cites W2405309579 @default.
- W4293149932 cites W2405881380 @default.
- W4293149932 cites W2546631119 @default.
- W4293149932 cites W2560477285 @default.
- W4293149932 cites W2566251519 @default.
- W4293149932 cites W2566986569 @default.
- W4293149932 cites W2783421803 @default.
- W4293149932 cites W2913361223 @default.
- W4293149932 cites W2918973547 @default.
- W4293149932 cites W2951285277 @default.
- W4293149932 cites W2953266605 @default.
- W4293149932 cites W2980910189 @default.
- W4293149932 cites W2995482962 @default.
- W4293149932 cites W3081606079 @default.
- W4293149932 cites W3109650898 @default.
- W4293149932 cites W3110809172 @default.
- W4293149932 cites W3134745689 @default.
- W4293149932 cites W3158567937 @default.
- W4293149932 cites W3196416394 @default.
- W4293149932 cites W3210646237 @default.
- W4293149932 cites W4200574794 @default.
- W4293149932 cites W799363603 @default.
- W4293149932 doi "https://doi.org/10.1080/01431161.2022.2091965" @default.
- W4293149932 hasPublicationYear "2022" @default.
- W4293149932 type Work @default.
- W4293149932 citedByCount "3" @default.
- W4293149932 countsByYear W42931499322023 @default.
- W4293149932 crossrefType "journal-article" @default.
- W4293149932 hasAuthorship W4293149932A5002751150 @default.
- W4293149932 hasAuthorship W4293149932A5003259300 @default.
- W4293149932 hasAuthorship W4293149932A5007980880 @default.
- W4293149932 hasAuthorship W4293149932A5013652689 @default.
- W4293149932 hasAuthorship W4293149932A5033100552 @default.
- W4293149932 hasConcept C105795698 @default.
- W4293149932 hasConcept C111368507 @default.
- W4293149932 hasConcept C121684516 @default.
- W4293149932 hasConcept C127313418 @default.
- W4293149932 hasConcept C127413603 @default.
- W4293149932 hasConcept C13280743 @default.
- W4293149932 hasConcept C136856113 @default.
- W4293149932 hasConcept C137800194 @default.
- W4293149932 hasConcept C14279187 @default.
- W4293149932 hasConcept C146978453 @default.
- W4293149932 hasConcept C151406439 @default.
- W4293149932 hasConcept C153294291 @default.
- W4293149932 hasConcept C19269812 @default.
- W4293149932 hasConcept C196070930 @default.
- W4293149932 hasConcept C205649164 @default.
- W4293149932 hasConcept C24338571 @default.
- W4293149932 hasConcept C33923547 @default.
- W4293149932 hasConcept C39432304 @default.
- W4293149932 hasConcept C41008148 @default.
- W4293149932 hasConcept C502989409 @default.
- W4293149932 hasConcept C62649853 @default.
- W4293149932 hasConcept C74501621 @default.
- W4293149932 hasConceptScore W4293149932C105795698 @default.
- W4293149932 hasConceptScore W4293149932C111368507 @default.
- W4293149932 hasConceptScore W4293149932C121684516 @default.
- W4293149932 hasConceptScore W4293149932C127313418 @default.
- W4293149932 hasConceptScore W4293149932C127413603 @default.
- W4293149932 hasConceptScore W4293149932C13280743 @default.
- W4293149932 hasConceptScore W4293149932C136856113 @default.
- W4293149932 hasConceptScore W4293149932C137800194 @default.
- W4293149932 hasConceptScore W4293149932C14279187 @default.
- W4293149932 hasConceptScore W4293149932C146978453 @default.
- W4293149932 hasConceptScore W4293149932C151406439 @default.
- W4293149932 hasConceptScore W4293149932C153294291 @default.
- W4293149932 hasConceptScore W4293149932C19269812 @default.
- W4293149932 hasConceptScore W4293149932C196070930 @default.
- W4293149932 hasConceptScore W4293149932C205649164 @default.
- W4293149932 hasConceptScore W4293149932C24338571 @default.