Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293152672> ?p ?o ?g. }
- W4293152672 endingPage "104037" @default.
- W4293152672 startingPage "104037" @default.
- W4293152672 abstract "Brain tumors are highly hazardous, and precise automated segmentation of brain tumor subregions has great importance and research significance on the diagnosis and treatment of diseases. Rapid advances in deep learning make accurate and efficient automatic segmentation more possible, but there are challenges. In this paper, an efficient 3D segmentation model (DPAFNet) based on dual-path (DP) module and multi-scale attention fusion (MAF) module is proposed. In DPAFNet, the dual path convolution is applied to broaden the network scale and residual connection is introduced to avoid network degradation. An attention fusion module is proposed to aggregate channel level global and local information, in which feature maps of different scales are fused to obtain features that are enriched in semantic information. This makes the object information of small tumors get full attention. Furthermore, the 3D iterative dilated convolution merging (IDCM) module expands the receptive field and improves the ability of context awareness. Ablation experiments verify the optimal combination of dilation rate for the dilated convolution merging module and demonstrate the enhancement of segmentation accuracy due to the post-processing method. Comparative experiments of this study on BraTS2018, BraTS2019 and BraTS2020 are promising and provide a promising precision and Dice score compared to related work. The proposed DPAFNet achieves Dice score of 79.5%, 90.0% and 83.9% in the enhancing tumor, whole tumor and tumor core on BraTS2018, respectively. On BraTS2019, it achieves Dice score of 78.2%, 89.0% and 81.2% in the enhancing tumor, whole tumor and tumor core, respectively." @default.
- W4293152672 created "2022-08-27" @default.
- W4293152672 creator A5005826708 @default.
- W4293152672 creator A5052616893 @default.
- W4293152672 creator A5068112632 @default.
- W4293152672 creator A5081722152 @default.
- W4293152672 creator A5086664284 @default.
- W4293152672 creator A5088010119 @default.
- W4293152672 date "2023-01-01" @default.
- W4293152672 modified "2023-10-16" @default.
- W4293152672 title "DPAFNet: A Residual Dual-Path Attention-Fusion Convolutional Neural Network for Multimodal Brain Tumor Segmentation" @default.
- W4293152672 cites W1641498739 @default.
- W4293152672 cites W1901129140 @default.
- W4293152672 cites W2412782625 @default.
- W4293152672 cites W2464708700 @default.
- W4293152672 cites W2587828787 @default.
- W4293152672 cites W2592929672 @default.
- W4293152672 cites W2884585870 @default.
- W4293152672 cites W2942309166 @default.
- W4293152672 cites W2969913432 @default.
- W4293152672 cites W2983817809 @default.
- W4293152672 cites W2993271259 @default.
- W4293152672 cites W3000903946 @default.
- W4293152672 cites W3012660340 @default.
- W4293152672 cites W3013630101 @default.
- W4293152672 cites W3016120846 @default.
- W4293152672 cites W3016950250 @default.
- W4293152672 cites W3026902703 @default.
- W4293152672 cites W3027439008 @default.
- W4293152672 cites W3027873036 @default.
- W4293152672 cites W3030952871 @default.
- W4293152672 cites W3032660954 @default.
- W4293152672 cites W3040617750 @default.
- W4293152672 cites W3043892437 @default.
- W4293152672 cites W3044256341 @default.
- W4293152672 cites W3090974769 @default.
- W4293152672 cites W3094156580 @default.
- W4293152672 cites W3105290897 @default.
- W4293152672 cites W3109167713 @default.
- W4293152672 cites W3118442183 @default.
- W4293152672 cites W3127665049 @default.
- W4293152672 cites W3137456187 @default.
- W4293152672 cites W3142772534 @default.
- W4293152672 cites W3143351114 @default.
- W4293152672 cites W3154072362 @default.
- W4293152672 cites W3156786744 @default.
- W4293152672 cites W3162239341 @default.
- W4293152672 cites W3167747937 @default.
- W4293152672 cites W3169955164 @default.
- W4293152672 cites W3178929172 @default.
- W4293152672 cites W3181013887 @default.
- W4293152672 cites W3184219099 @default.
- W4293152672 cites W3201453781 @default.
- W4293152672 cites W3204426737 @default.
- W4293152672 cites W3204895347 @default.
- W4293152672 cites W3205086685 @default.
- W4293152672 cites W4200558263 @default.
- W4293152672 cites W4211063680 @default.
- W4293152672 cites W4214511005 @default.
- W4293152672 cites W4224248334 @default.
- W4293152672 doi "https://doi.org/10.1016/j.bspc.2022.104037" @default.
- W4293152672 hasPublicationYear "2023" @default.
- W4293152672 type Work @default.
- W4293152672 citedByCount "8" @default.
- W4293152672 countsByYear W42931526722022 @default.
- W4293152672 countsByYear W42931526722023 @default.
- W4293152672 crossrefType "journal-article" @default.
- W4293152672 hasAuthorship W4293152672A5005826708 @default.
- W4293152672 hasAuthorship W4293152672A5052616893 @default.
- W4293152672 hasAuthorship W4293152672A5068112632 @default.
- W4293152672 hasAuthorship W4293152672A5081722152 @default.
- W4293152672 hasAuthorship W4293152672A5086664284 @default.
- W4293152672 hasAuthorship W4293152672A5088010119 @default.
- W4293152672 hasConcept C11413529 @default.
- W4293152672 hasConcept C138885662 @default.
- W4293152672 hasConcept C151730666 @default.
- W4293152672 hasConcept C153180895 @default.
- W4293152672 hasConcept C154945302 @default.
- W4293152672 hasConcept C155512373 @default.
- W4293152672 hasConcept C22029948 @default.
- W4293152672 hasConcept C2524010 @default.
- W4293152672 hasConcept C2776401178 @default.
- W4293152672 hasConcept C2779343474 @default.
- W4293152672 hasConcept C31972630 @default.
- W4293152672 hasConcept C33923547 @default.
- W4293152672 hasConcept C41008148 @default.
- W4293152672 hasConcept C41895202 @default.
- W4293152672 hasConcept C45347329 @default.
- W4293152672 hasConcept C50644808 @default.
- W4293152672 hasConcept C81363708 @default.
- W4293152672 hasConcept C86803240 @default.
- W4293152672 hasConcept C89600930 @default.
- W4293152672 hasConceptScore W4293152672C11413529 @default.
- W4293152672 hasConceptScore W4293152672C138885662 @default.
- W4293152672 hasConceptScore W4293152672C151730666 @default.
- W4293152672 hasConceptScore W4293152672C153180895 @default.
- W4293152672 hasConceptScore W4293152672C154945302 @default.
- W4293152672 hasConceptScore W4293152672C155512373 @default.