Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293162009> ?p ?o ?g. }
- W4293162009 abstract "Abstract We apply a multiresolution Gaussian process model (Lattice Kriging) to combine satellite observations, ground‐based observations, and an empirical auroral model, to produce the assimilation of auroral energy flux and mean energy over high‐latitude regions. Compared to a simple padding, the assimilation coherently combines various data inputs leading to continuous transitions between different datasets. The multiresolution modeling capability is achieved by allocating multiple layers of basis functions with different resolutions. Higher‐resolution fitting results capture more mesoscale (10–100 s km) structures such as auroral arcs, than the low‐resolution ones and the empirical model. To better reconcile different datasets, two preprocessing steps, temporal interpolation of satellite data and spatial down‐sampling of low‐fidelity data, are implemented. The inherent smoothing effect of the fitting, which causes an unrealistic spreading of the aurora, is mitigated by a post processing step: the K Nearest Neighbor (KNN) algorithm. KNN identifies the probability of a region with significant aurora and thereby eliminates those regions with low values. Thereby, this methodology can be used to maintain realistic and mesoscale auroral structures without boundary issues. We then run the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) driven by the high‐ and low‐resolution auroral assimilations and compare total electron contents (TECs). TIEGCM driven by data assimilation produces enhanced TECs by a factor of ∼2 than the one driven by the empirical aurora, and high‐resolution results show mesoscale structures. Our study shows the value of incorporating realistic auroral inputs via assimilation to drive ionosphere‐thermosphere models for better understanding the consequences of mesoscale phenomena." @default.
- W4293162009 created "2022-08-27" @default.
- W4293162009 creator A5004411560 @default.
- W4293162009 creator A5007895377 @default.
- W4293162009 creator A5033059935 @default.
- W4293162009 creator A5033470008 @default.
- W4293162009 creator A5056002024 @default.
- W4293162009 creator A5068182445 @default.
- W4293162009 creator A5086853217 @default.
- W4293162009 date "2022-09-01" @default.
- W4293162009 modified "2023-09-26" @default.
- W4293162009 title "Multiresolution Data Assimilation for Auroral Energy Flux and Mean Energy Using DMSP SSUSI, THEMIS ASI, and An Empirical Model" @default.
- W4293162009 cites W1581304140 @default.
- W4293162009 cites W1872983032 @default.
- W4293162009 cites W1929566043 @default.
- W4293162009 cites W1964073316 @default.
- W4293162009 cites W1964544649 @default.
- W4293162009 cites W1965151186 @default.
- W4293162009 cites W1969325760 @default.
- W4293162009 cites W1977180535 @default.
- W4293162009 cites W1979093113 @default.
- W4293162009 cites W1987529207 @default.
- W4293162009 cites W2005736302 @default.
- W4293162009 cites W2026253822 @default.
- W4293162009 cites W2054837415 @default.
- W4293162009 cites W2057622447 @default.
- W4293162009 cites W2066369583 @default.
- W4293162009 cites W2076305882 @default.
- W4293162009 cites W2081495066 @default.
- W4293162009 cites W2094285568 @default.
- W4293162009 cites W2096713129 @default.
- W4293162009 cites W2124611503 @default.
- W4293162009 cites W2131153922 @default.
- W4293162009 cites W2140253887 @default.
- W4293162009 cites W2142764230 @default.
- W4293162009 cites W2469078731 @default.
- W4293162009 cites W2482625236 @default.
- W4293162009 cites W2799211855 @default.
- W4293162009 cites W2887192752 @default.
- W4293162009 cites W2982677086 @default.
- W4293162009 cites W3000447332 @default.
- W4293162009 cites W3004538612 @default.
- W4293162009 cites W3006551998 @default.
- W4293162009 cites W3043357567 @default.
- W4293162009 cites W3048803434 @default.
- W4293162009 cites W3081226521 @default.
- W4293162009 cites W3128229958 @default.
- W4293162009 cites W3140152705 @default.
- W4293162009 cites W3158493516 @default.
- W4293162009 cites W3162059354 @default.
- W4293162009 cites W3206321541 @default.
- W4293162009 cites W4200003057 @default.
- W4293162009 cites W4233522073 @default.
- W4293162009 cites W4252272985 @default.
- W4293162009 doi "https://doi.org/10.1029/2022sw003146" @default.
- W4293162009 hasPublicationYear "2022" @default.
- W4293162009 type Work @default.
- W4293162009 citedByCount "1" @default.
- W4293162009 countsByYear W42931620092023 @default.
- W4293162009 crossrefType "journal-article" @default.
- W4293162009 hasAuthorship W4293162009A5004411560 @default.
- W4293162009 hasAuthorship W4293162009A5007895377 @default.
- W4293162009 hasAuthorship W4293162009A5033059935 @default.
- W4293162009 hasAuthorship W4293162009A5033470008 @default.
- W4293162009 hasAuthorship W4293162009A5056002024 @default.
- W4293162009 hasAuthorship W4293162009A5068182445 @default.
- W4293162009 hasAuthorship W4293162009A5086853217 @default.
- W4293162009 hasBestOaLocation W42931620091 @default.
- W4293162009 hasConcept C104114177 @default.
- W4293162009 hasConcept C116403925 @default.
- W4293162009 hasConcept C119857082 @default.
- W4293162009 hasConcept C121332964 @default.
- W4293162009 hasConcept C127313418 @default.
- W4293162009 hasConcept C137800194 @default.
- W4293162009 hasConcept C153294291 @default.
- W4293162009 hasConcept C154945302 @default.
- W4293162009 hasConcept C24552861 @default.
- W4293162009 hasConcept C2778751583 @default.
- W4293162009 hasConcept C31972630 @default.
- W4293162009 hasConcept C3770464 @default.
- W4293162009 hasConcept C40382383 @default.
- W4293162009 hasConcept C41008148 @default.
- W4293162009 hasConcept C62649853 @default.
- W4293162009 hasConcept C8058405 @default.
- W4293162009 hasConcept C81692654 @default.
- W4293162009 hasConceptScore W4293162009C104114177 @default.
- W4293162009 hasConceptScore W4293162009C116403925 @default.
- W4293162009 hasConceptScore W4293162009C119857082 @default.
- W4293162009 hasConceptScore W4293162009C121332964 @default.
- W4293162009 hasConceptScore W4293162009C127313418 @default.
- W4293162009 hasConceptScore W4293162009C137800194 @default.
- W4293162009 hasConceptScore W4293162009C153294291 @default.
- W4293162009 hasConceptScore W4293162009C154945302 @default.
- W4293162009 hasConceptScore W4293162009C24552861 @default.
- W4293162009 hasConceptScore W4293162009C2778751583 @default.
- W4293162009 hasConceptScore W4293162009C31972630 @default.
- W4293162009 hasConceptScore W4293162009C3770464 @default.
- W4293162009 hasConceptScore W4293162009C40382383 @default.
- W4293162009 hasConceptScore W4293162009C41008148 @default.
- W4293162009 hasConceptScore W4293162009C62649853 @default.