Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293193225> ?p ?o ?g. }
- W4293193225 endingPage "16" @default.
- W4293193225 startingPage "1" @default.
- W4293193225 abstract "Change detection (CD) with hyperspectral images (HSIs) can be effectively performed using deep learning networks (DLNs) by taking advantage of HSIs for their abundant spectral and spatial information and the excellent performance of DLN in machine learning. By modeling the temporal dependence of multiscale representative features, more discriminative information reflecting land use and land cover (LULC) changes can be obtained by suppressing less correlated information while improving the robustness of pseudo-changes caused by imaging noises. However, preserving time-dependent multiscale representative features while extracting spatial–spectral features based on conventional DLN is difficult, mainly due to the structural limitation of conventional DLN. A multipath convolutional long short-term memory (LSTM) multipath convolutional long short-term memory neural network (MP-ConvLSTM) taking advantage of LSTM and convolutional neural network (CNN) through the designed parallel architecture to learn multilevel temporal dependencies of bitemporal HSIs, therefore, was proposed for extracting multiscale temporal–spatial–spectral features by combining hidden states from different paths of ConvLSTM in the present study. In the proposed MP-ConvLSTM, the efficient channel attention (ECA) module was introduced to refine features of different paths, and Siamese CNN was adopted to reduce HSIs’ dimensionality and extract preliminary features to build up an end-to-end trainable model for CD with HSIs. The validity of the MP-ConvLSTM was evaluated using the binary and multiclass CD datasets. The CD accuracy of the proposed MP-ConvLSTM was visually and statistically evaluated by different criteria and compared with those derived from several state-of-the-art (SOTA) CD algorithms. The experiments demonstrated that our proposed model not only outperformed those SOTA CD models but also exhibited better tradeoff between complexity and accuracy in general." @default.
- W4293193225 created "2022-08-27" @default.
- W4293193225 creator A5010073533 @default.
- W4293193225 creator A5050357549 @default.
- W4293193225 creator A5062718067 @default.
- W4293193225 creator A5075729273 @default.
- W4293193225 creator A5078192078 @default.
- W4293193225 date "2022-01-01" @default.
- W4293193225 modified "2023-10-02" @default.
- W4293193225 title "Learning Multiscale Temporal–Spatial–Spectral Features via a Multipath Convolutional LSTM Neural Network for Change Detection With Hyperspectral Images" @default.
- W4293193225 cites W1965852574 @default.
- W4293193225 cites W1974776350 @default.
- W4293193225 cites W1997413270 @default.
- W4293193225 cites W2004112412 @default.
- W4293193225 cites W2036798369 @default.
- W4293193225 cites W2039609561 @default.
- W4293193225 cites W2049585214 @default.
- W4293193225 cites W2064675550 @default.
- W4293193225 cites W2128084896 @default.
- W4293193225 cites W2144552105 @default.
- W4293193225 cites W2157621128 @default.
- W4293193225 cites W2165577558 @default.
- W4293193225 cites W2312468355 @default.
- W4293193225 cites W2332105609 @default.
- W4293193225 cites W2431738724 @default.
- W4293193225 cites W2550318172 @default.
- W4293193225 cites W2564935578 @default.
- W4293193225 cites W2568858292 @default.
- W4293193225 cites W2572303978 @default.
- W4293193225 cites W2593771152 @default.
- W4293193225 cites W2743142445 @default.
- W4293193225 cites W2752782242 @default.
- W4293193225 cites W2754051771 @default.
- W4293193225 cites W2782522152 @default.
- W4293193225 cites W2792827505 @default.
- W4293193225 cites W2793941577 @default.
- W4293193225 cites W2800240447 @default.
- W4293193225 cites W2886493749 @default.
- W4293193225 cites W2900587135 @default.
- W4293193225 cites W2913594625 @default.
- W4293193225 cites W2921442714 @default.
- W4293193225 cites W2963042536 @default.
- W4293193225 cites W2963091558 @default.
- W4293193225 cites W2963993350 @default.
- W4293193225 cites W2964137095 @default.
- W4293193225 cites W2984033187 @default.
- W4293193225 cites W3027201985 @default.
- W4293193225 cites W3034552520 @default.
- W4293193225 cites W3036453075 @default.
- W4293193225 cites W3037640242 @default.
- W4293193225 cites W3099102165 @default.
- W4293193225 cites W3099831940 @default.
- W4293193225 cites W3118351468 @default.
- W4293193225 cites W3134663792 @default.
- W4293193225 cites W3134910218 @default.
- W4293193225 cites W3157928789 @default.
- W4293193225 cites W3163207600 @default.
- W4293193225 cites W3183729446 @default.
- W4293193225 cites W3200021186 @default.
- W4293193225 cites W4213185605 @default.
- W4293193225 doi "https://doi.org/10.1109/tgrs.2022.3176642" @default.
- W4293193225 hasPublicationYear "2022" @default.
- W4293193225 type Work @default.
- W4293193225 citedByCount "8" @default.
- W4293193225 countsByYear W42931932252022 @default.
- W4293193225 countsByYear W42931932252023 @default.
- W4293193225 crossrefType "journal-article" @default.
- W4293193225 hasAuthorship W4293193225A5010073533 @default.
- W4293193225 hasAuthorship W4293193225A5050357549 @default.
- W4293193225 hasAuthorship W4293193225A5062718067 @default.
- W4293193225 hasAuthorship W4293193225A5075729273 @default.
- W4293193225 hasAuthorship W4293193225A5078192078 @default.
- W4293193225 hasConcept C104317684 @default.
- W4293193225 hasConcept C108583219 @default.
- W4293193225 hasConcept C127313418 @default.
- W4293193225 hasConcept C153180895 @default.
- W4293193225 hasConcept C154945302 @default.
- W4293193225 hasConcept C159078339 @default.
- W4293193225 hasConcept C159620131 @default.
- W4293193225 hasConcept C185592680 @default.
- W4293193225 hasConcept C41008148 @default.
- W4293193225 hasConcept C55493867 @default.
- W4293193225 hasConcept C62649853 @default.
- W4293193225 hasConcept C63479239 @default.
- W4293193225 hasConcept C81363708 @default.
- W4293193225 hasConcept C97931131 @default.
- W4293193225 hasConceptScore W4293193225C104317684 @default.
- W4293193225 hasConceptScore W4293193225C108583219 @default.
- W4293193225 hasConceptScore W4293193225C127313418 @default.
- W4293193225 hasConceptScore W4293193225C153180895 @default.
- W4293193225 hasConceptScore W4293193225C154945302 @default.
- W4293193225 hasConceptScore W4293193225C159078339 @default.
- W4293193225 hasConceptScore W4293193225C159620131 @default.
- W4293193225 hasConceptScore W4293193225C185592680 @default.
- W4293193225 hasConceptScore W4293193225C41008148 @default.
- W4293193225 hasConceptScore W4293193225C55493867 @default.
- W4293193225 hasConceptScore W4293193225C62649853 @default.
- W4293193225 hasConceptScore W4293193225C63479239 @default.