Matches in SemOpenAlex for { <https://semopenalex.org/work/W4293193670> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4293193670 endingPage "54148" @default.
- W4293193670 startingPage "54136" @default.
- W4293193670 abstract "The correctness of debug information included in optimized binaries has been the subject of recent attention by the research community. Indeed, it represents a practically important problem, as most of the software running in production is produced by an optimizing compiler. Current solutions rely on invariants, human-defined rules that embed the desired behavior, whose violation may indicate the presence of a bug. Although this approach proved to be effective in discovering several bugs, it is unable to identify bugs that do not trigger invariants. In this paper, we investigate the feasibility of using Deep Neural Networks (DNNs) to discover incorrect debug information. We trained a set of different models borrowed from the NLP community in an unsupervised way on a large dataset of debug traces and tested their performance on two novel datasets that we propose. Our results are positive and show that DNNs are capable of discovering bugs in both synthetic and real datasets. More interestingly, we performed a <i>live analysis</i> of our models by using them as bug detectors in a fuzzing system. We show that they were able to report 12 unknown bugs in the latest version of the widely used LLVM toolchain, 2 of which have been confirmed." @default.
- W4293193670 created "2022-08-27" @default.
- W4293193670 creator A5035681799 @default.
- W4293193670 creator A5051841898 @default.
- W4293193670 creator A5059668922 @default.
- W4293193670 date "2022-01-01" @default.
- W4293193670 modified "2023-09-30" @default.
- W4293193670 title "Debugging Debug Information With Neural Networks" @default.
- W4293193670 cites W1680927362 @default.
- W4293193670 cites W1966021031 @default.
- W4293193670 cites W1985514943 @default.
- W4293193670 cites W2071952624 @default.
- W4293193670 cites W2095445208 @default.
- W4293193670 cites W2118450335 @default.
- W4293193670 cites W2155877593 @default.
- W4293193670 cites W2170737051 @default.
- W4293193670 cites W2295658119 @default.
- W4293193670 cites W2461954509 @default.
- W4293193670 cites W2532737545 @default.
- W4293193670 cites W2788197406 @default.
- W4293193670 cites W2808279976 @default.
- W4293193670 cites W2808957028 @default.
- W4293193670 cites W2897009930 @default.
- W4293193670 cites W2898887908 @default.
- W4293193670 cites W2904932877 @default.
- W4293193670 cites W2962425620 @default.
- W4293193670 cites W2963935794 @default.
- W4293193670 cites W3007855180 @default.
- W4293193670 cites W3011564318 @default.
- W4293193670 cites W3033353503 @default.
- W4293193670 cites W3090636587 @default.
- W4293193670 cites W3153841236 @default.
- W4293193670 cites W3155032774 @default.
- W4293193670 cites W3170962973 @default.
- W4293193670 cites W3196239222 @default.
- W4293193670 cites W4238083723 @default.
- W4293193670 cites W4248444238 @default.
- W4293193670 cites W4310632455 @default.
- W4293193670 doi "https://doi.org/10.1109/access.2022.3176617" @default.
- W4293193670 hasPublicationYear "2022" @default.
- W4293193670 type Work @default.
- W4293193670 citedByCount "2" @default.
- W4293193670 countsByYear W42931936702022 @default.
- W4293193670 countsByYear W42931936702023 @default.
- W4293193670 crossrefType "journal-article" @default.
- W4293193670 hasAuthorship W4293193670A5035681799 @default.
- W4293193670 hasAuthorship W4293193670A5051841898 @default.
- W4293193670 hasAuthorship W4293193670A5059668922 @default.
- W4293193670 hasBestOaLocation W42931936701 @default.
- W4293193670 hasConcept C1009929 @default.
- W4293193670 hasConcept C111065885 @default.
- W4293193670 hasConcept C119857082 @default.
- W4293193670 hasConcept C154945302 @default.
- W4293193670 hasConcept C168065819 @default.
- W4293193670 hasConcept C169590947 @default.
- W4293193670 hasConcept C177264268 @default.
- W4293193670 hasConcept C199360897 @default.
- W4293193670 hasConcept C2777062904 @default.
- W4293193670 hasConcept C2777904410 @default.
- W4293193670 hasConcept C41008148 @default.
- W4293193670 hasConcept C50644808 @default.
- W4293193670 hasConcept C55439883 @default.
- W4293193670 hasConceptScore W4293193670C1009929 @default.
- W4293193670 hasConceptScore W4293193670C111065885 @default.
- W4293193670 hasConceptScore W4293193670C119857082 @default.
- W4293193670 hasConceptScore W4293193670C154945302 @default.
- W4293193670 hasConceptScore W4293193670C168065819 @default.
- W4293193670 hasConceptScore W4293193670C169590947 @default.
- W4293193670 hasConceptScore W4293193670C177264268 @default.
- W4293193670 hasConceptScore W4293193670C199360897 @default.
- W4293193670 hasConceptScore W4293193670C2777062904 @default.
- W4293193670 hasConceptScore W4293193670C2777904410 @default.
- W4293193670 hasConceptScore W4293193670C41008148 @default.
- W4293193670 hasConceptScore W4293193670C50644808 @default.
- W4293193670 hasConceptScore W4293193670C55439883 @default.
- W4293193670 hasLocation W42931936701 @default.
- W4293193670 hasOpenAccess W4293193670 @default.
- W4293193670 hasPrimaryLocation W42931936701 @default.
- W4293193670 hasRelatedWork W106084318 @default.
- W4293193670 hasRelatedWork W1453240937 @default.
- W4293193670 hasRelatedWork W1498982577 @default.
- W4293193670 hasRelatedWork W2004605222 @default.
- W4293193670 hasRelatedWork W2025670560 @default.
- W4293193670 hasRelatedWork W2900990156 @default.
- W4293193670 hasRelatedWork W4233387348 @default.
- W4293193670 hasRelatedWork W4285597959 @default.
- W4293193670 hasRelatedWork W4293193670 @default.
- W4293193670 hasRelatedWork W2523525283 @default.
- W4293193670 hasVolume "10" @default.
- W4293193670 isParatext "false" @default.
- W4293193670 isRetracted "false" @default.
- W4293193670 workType "article" @default.